В каких трех регионах действуют крупные гэс. Электроэнергетика россии. Что такое ГЭС

С давних времен люди пользовались движущей силой воды. Мололи муку на мельницах, колеса которых приводились в движение потоками воды, сплавляли тяжелые стволы деревьев вниз по течению, в общем использовали гидроэнергию для решения самых разных задач, включая промышленные.

Первые ГЭС

В конце 19 века, с началом электрификации городов, гидроэлектростанции начали очень резко завоевывать популярность в мире. В 1878 году в Англии появилась первая в мире гидроэлектростанция, которая питала тогда всего одну дуговую лампу в картинной галерее изобретателя Уильяма Армстронга… А к 1889 году только в Соединенных Штатах гидроэлектростанций насчитывалось уже 200 штук.

Одним из важнейших шагов в освоении гидроэнергетики стало сооружение в 1930-е годы в США Плотины Гувера. Что касается России, то здесь уже в 1892 году, в Рудном Алтае на реке Березовка, была построена первая четырехтурбинная гидроэлектростанция мощностью 200 кВт, призванная обеспечить электричеством шахтный водоотлив Зыряновского рудника. Так, с освоением человечеством электричества, гидроэлектростанции ознаменовали собой стремительный ход промышленного прогресса.

Сегодня современные гидроэлектростанции - это огромные сооружения на гигаватты установленной мощности. Однако принцип работы любой ГЭС остается в целом достаточно простым, и везде почти полностью одинаковым. Напор воды, направленный на лопасти гидротурбины, приводит ее во вращение, а гидротурбина в свою очередь, будучи соединена с генератором, вращает генератор. Генератор вырабатывает электроэнергию, которая и .

В машинном зале гидроэлектростанции установлены гидроагрегаты, которые преобразуют энергию потока воды в энергию электрическую, а непосредственно в здании гидроэлектростанции располагаются все необходимые распределительные устройства, а также устройства управления и контроля работы ГЭС.


Мощность гидроэлектростанции зависит от количества и от напора воды, проходящей через турбины. Непосредственно напор получается благодаря направленному движению потока воды. Это может быть вода накопленная у плотины, когда в определенном месте на реке строится плотина, или же напор получается благодаря деривации потока, - это когда вода отводится от русла по специальному туннелю или каналу. Так, гидроэлектростанции бывают плотинными, деривационными и плотинно-деривационными.

Наиболее распространенные плотинные ГЭС имеют в своей основе плотину, перегораживающую русло реки. За плотиной вода поднимается, накапливается, создавая своего рода водяной столб, обеспечивающий давление и напор. Чем выше плотина - тем сильнее напор. Самая высокая в мире плотина имеет высоту 305 метров, это плотина на Цзиньпинской ГЭС мощностью 3,6 ГВт, что на реке Ялунцзян в западной части провинции Сычуань на Юго-Западне Китая.

Гидростанции, использующие энергию воды, бывают двух типов. Если река имеет небольшое падение, но относительно многоводна, то при помощи плотины, перегораживающей реку, создают достаточную разность уровней воды.

Над плотиной образуется водохранилище, обеспечивающее равномерную работу станции в течение года. У берега ниже плотины, в непосредственной близости к ней устанавливается водяная турбина, соединенная с электрическим генератором (приплотинная станция). Если река судоходна, то у противоположного берега делается шлюз для пропуска судов.

Если же река не очень многоводна, но имеет большое падение и бурное течение (например, горные реки), то часть воды отводится по специальному каналу, имеющему гораздо меньший уклон, чем река. Канал этот иногда имеет протяженность в несколько километров. Иногда условия местности вынуждают заменить канал тоннелем (для мощных станций). Таким образом создается значительная разность уровней между выходным отверстием канала и нижним течением реки.

У конца канала вода поступает в трубу с крутым наклоном, у нижнего конца которой располагается гидротурбина с генератором. Благодаря значительной разности уровней вода приобретает большую кинетическую энергию, достаточную для питания станции (деривационные станции).

Подобные станции могут иметь большую мощность и относиться к разряду районных электростанций (смотрите - ). На самых малых станциях турбина иногда заменяется менее эффективным, по более дешевым водяным колесом.

Виды ГЭС и их устройства


Кроме плотины гидроэлектростанция включает в себя здание и распределительное устройство. Основное оборудование ГЭС находится в здании, здесь установлены турбины и генераторы. Кроме плотины и здания, в ГЭС могут наличествовать шлюзы, водосбросные устройства, рыбоходы и судоподъемники.

Каждая ГЭС представляет собой уникальное сооружение, поэтому главная отличительная черта ГЭС от других типов промышленных электростанций - это их индивидуальность. Кстати, самое большое в мире водохранилище находится в Гане, это водохранилище Акосомбо на реке Вольта. Оно занимает 8500 квадратных километров, что составляет 3,6% площади всей страны.

Если по ходу русла реки имеется значительный уклон, то возводят деривационную ГЭС. Здесь нет необходимости в строительстве большого плотинного водохранилища, вместо этого вода только направляется через специально возводимые водоводные каналы или тоннели прямо к зданию электростанции.

Иногда на деривационных ГЭС устраивают небольшие бассейны суточного регулирования, позволяющие управлять напором, и таким образом влиять на количество вырабатываемой электроэнергии в зависимости от загруженности электросети.


Гидроаккумулирующие электростанции (ГАЭС) - особый вид гидроэлектростанций. Здесь сама станция предназначена для того, чтобы сгладить суточные перепады и пиковые нагрузки на , и тем самым повысить надежность работы электросети.

Такая станция способна работать как в генераторном режиме, так и в накопительном, когда насосы закачивают воду в верхний бьеф из нижнего бьефа. Бьефом, в данном контексте, называется объект типа бассейна, являющийся частью водохранилища, и примыкающий к гидроэлектростанции. Верхний бьеф располагается по течению выше, нижний - ниже по течению.

Примером ГАЭС может служить водохранилище Таум Саук в Миссури, возведенное в 80 километрах от Миссисипи, вместимостью 5,55 млрд. литров, позволяющее энергосистеме обеспечить пиковую мощность в 440 МВт.

По состоянию на 2010 год в России существует 14 гидроэлектростанций мощностью более 1000 мегаватт и более сотни крупных гидроэлектростанций.

Гидроэлектростанции России мощностью свыше 1000 мВт

Наименование

Установленная мощность, МВт

География

Саяно-Шушенская ГЭС

р. Енисей, г. Саяногорск

Красноярская ГЭС

р. Енисей, г. Дивногорск

Братская ГЭС

р. Ангара, г. Братск

Усть-Илимская ГЭС

р. Ангара, г. Усть-Илимск

Волгоградская ГЭС

р. Волга, г. Волжский

Жигулёвская ГЭС

р. Волга, г. Жигулевск

Бурейская ГЭС

р. Бурея, в Амурской области

Чебоксарская ГЭС

р. Волга, г. Новочебоксарск

Саратовская ГЭС

р. Волга, г. Балаково

Зейская ГЭС

р. Зея, г. Зея

Нижнекамская ГЭС

р. Кама, г. Набережные Челны

Загорская ГАЭС

р. Кунья, пос. Богородское

Воткинская ГЭС

р. Кама, г. Чайковский

Чиркейская ГЭС

р. Сулак, Дагестан

Крупнейшие гэс в мире

Наименование

Мощность, ГВт

Среднегодовая выработка, млрд кВт·ч

География

Три ущелья

р. Янцзы, г. Сандоупин, Китай

р. Парана,

г. Фос-ду-Игуасу, Бразилия/Парагвай

р. Карони, Венесуэла

Черчилл-Фолс

р. Черчилл, Канада

р. Токантинс, Бразилия

Коротко опишем крупнейшие гидроэлектростанции России.

Крупнейшие гидроэлектростанции России находятся в составе Ангаро-Енисейского каскада ГЭС, построенного на сибирской реке Енисее и его притоке – Ангаре. В этот каскад входят следующие ГЭС:

    на Енисее – крупнейшая в России Саяно-Шушенская ГЭС и вторая по величине в России Красноярская ГЭС, а также Майнская ГЭС;

    на Ангаре – Братская и Усть-Илимская ГЭС, входящие в первую пятерку ГЭС России, а также Иркутская ГЭС.

Помимо этого на Ангаре строится Богучанская ГЭС. Она располагается в 367 км ниже по течению от существующей Усть-Илимской ГЭСи в 444 км от устья реки.

Саяно-Шушенская гэс

Саяно-Шушенская гидроэлектростанция имени П. С. Непорожнего – крупнейшая по установленной мощности электростанция России, шестая среди ныне действующих гидроэлектростанций в мире. Расположена на реке Енисей, на границе между Красноярским краем и Хакасией, у посёлка Черёмушки, возле Саяногорска. Строительство Саяно-Шушенской ГЭС, начатое в 1963 году, было официально завершено только в 2000 году.

В 1956-1960 годах «Ленгидроэнергопроектом» была разработана схема гидроэнергетического использования верхнего Енисея, в ходе работы над которой была установлена целесообразность использования падения реки в районе Саянского коридора одной мощной ГЭС, что позволяло создать водохранилище с ёмкостью, достаточной для сезонного регулирования.

В 1962-1965 годах Ленинградский проектный институт «Ленгидропроект» разработал проектное задание для Саяно-Шушенской ГЭС. В ходе проектирования рассматривались варианты компоновки будущего гидроузла с каменно-набросной, бетонной гравитационной, арочной и арочно-гравитационной плотиной.

Из всех возможных вариантов наиболее предпочтительным оказался вариант с арочно-гравитационной плотиной. Например, вариант с каменно-набросной плотиной, потенциально несколько более дешёвый, был отвергнут по причине необходимости строительства крупных тоннельных водосбросов, требовавших сооружения сложных в эксплуатации двухъярусных водоприёмников и создававших тяжёлый гидравлический режим реки в нижнем бьефе.

Проектное задание Саяно-Шушенской ГЭС было утверждено Советом Министров СССР в 1965 году и предусматривало сооружение ГЭС с 12 гидроагрегатами мощностью по 530 МВт с подводом воды по типу использованного на Красноярской ГЭС, расположенными в здании ГЭС, по центру арочно-гравитационной плотины, и двумя поверхностными водосбросами без водобойных колодцев слева и справа от здания ГЭС, предусматривавших гашение энергии потока воды в яме размыва в нижнем бьефе.

В ходе работы над техническим проектом конструктивная схема отдельных элементов гидроузла, зафиксированная в проектном задании, подверглась изменению. В 1968 году по предложению Министерства энергетики СССР и заводов-производителей оборудования было решено увеличить единичную мощность гидроагрегатов до 640 МВт, что позволило уменьшить их количество до 10; кроме того, было принято решение об использовании однониточных трубопроводов и одноподводных спиральных камер, в результате чего удалось существенно уменьшить длину здания ГЭС. Также в связи со значительными прогнозируемыми размерами воронки размыва и возможным развитием ряда неблагоприятных процессов в нижнем бьефе было принято решение об отказе от предусмотренной проектным заданием схемы водосбросных сооружений с гашением потока в воронке размыва в пользу водосброса с водобойным колодцем, расположенного в правой части гидроузла.

11 января 1971 года технический проект Саяно-Шушенской ГЭС был утверждён коллегией Минэнерго СССР.

Подготовительный этап строительства Саяно-Шушенской ГЭС начался в 1963 году со строительства дорог, жилья для строителей и других объектов инфраструктуры. Согласно проектному заданию, строительство ГЭС предполагалось осуществить в 1963-1972 годах.

Непосредственные работы по сооружению собственно ГЭС были начаты 12 сентября 1968 года с отсыпки перемычек котлована первой очереди.

После осушения котлована 17 октября1970 годав основные сооружения станции был уложен первый кубометрбетона. К моменту перекрытия Енисея, осуществлённого11 октября1975 года, были построены основание водосбросной части плотины с донными водосбросами первого яруса, значительная часть водобойного колодца и рисберма. После перекрытия реки были развёрнуты работы по сооружению левобережной части плотины со зданием ГЭС. Вплоть до1979 годасток реки пропускался через 9 донных водосбросов, а также поверх строящейся водосбросной части плотины через так называемую «гребёнку», образованную наращиванием нечётных секций плотины по отношению к чётным.

Первый гидроагрегат Саяно-Шушенской ГЭС (со сменным рабочим колесом) был поставлен под промышленную нагрузку 18 декабря1978 года.

Отставание в темпах строительства ГЭС, в частности, в темпах укладки бетона, привело к чрезвычайному происшествию во время пропуска половодья 1979 года. Предполагалось использовать только водосбросы второго яруса (донные водосбросы первого яруса подлежали заделке). Однако из-за больших объемов паводковых вод возникла необходимость использования также и открытых водосливов, образованных за счёт штраблениянечётных секций водосбросной части плотины. Тем не менее, к началу половодья 1979 года водосбросной участок плотины не был подготовлен к пропуску воды и в этом варианте – в необходимые для безопасного пропуска половодья сооружения не было уложено более 100 000 м³ бетона. В результате23 мая1979 года при пропуске половодья произошёл перелив воды через раздельную стенку и затопление котлована ГЭС с введённым уже в строй гидроагрегатом № 1. Перед затоплением гидроагрегат был остановлен и частично демонтирован, что позволило после откачки воды восстановить его работоспособность. Но все же понадобилось время для восстановления гидроагрегата – откачка воды из здания ГЭС, осушка, ремонтно-восстановительные работы. В ходе восстановительных работ был сооружён бетонный барьер вокруг гидрогенератора, произведена герметизация ограждающих конструкций. Повторно гидроагрегат № 1 был включен в сеть20 сентября1979 года.

Ввод гидроагрегата № 2 (также со сменным рабочим колесом) был произведён 5 ноября1979 года, гидроагрегата № 3 со штатным рабочим колесом –21 декабря1979 года.

К этому времени начали возникать проблемы со строительными конструкциями плотины ГЭС. При заполнении водохранилища возникли трещины в бетоне плотины. Имели место значительные по объёму кавитационныеразрушения в водосбросах второго яруса и попусковом водосбросе первого яруса. Это было связано как с недостаточно продуманными проектными решениями, так и с отступлениями от проекта при строительстве и эксплуатации водосбросов. В частности, согласно проекту временные водосбросы второго яруса планировалось использовать в течение 2-3 лет, однако из-за затягивания строительства фактически они использовались 6 лет.

В 1980 году были пущены гидроагрегаты № 4 и № 5 (29 октябряи21 декабря),6 ноября1981 года– гидроагрегат № 6. Оставшиеся гидроагрегаты были пущены в1984 году(№ 7 –15 сентябряи № 8 –11 октября) и в1985 году(№ 9 –21 декабря, № 10 –25 декабря). К началу половодья 1985 года были заделаны водосбросы второго яруса и введена в работу часть эксплуатационных водосбросов. В1987 годувременные рабочие колёса гидроагрегатов № 1 и № 2 были заменены на постоянные. К1988 годустроительство ГЭС было в основном завершено, в1990 годуводохранилище было впервые заполнено до отметки НПУ. В постоянную эксплуатацию Саяно-Шушенская ГЭС была принята13 декабря2000 года.

И в процессе строительства Саяно-Шушенской ГЭС, и в процессе ее эксплуатации возникали проблемы, как со строительной (бетонной) частью станции, так и с оборудованием гидроагрегатов.

Проблемы с водобойными колодцами.

Первые, небольшие и относительно легко устранённые повреждения водобойного колодца Саяно-Шушенской ГЭС были зафиксированы в 1980-1981 годах. Разрушения были вызваны попаданием в водобойный колодец горной породы, кусков бетона и строительного мусора, нарушениями в технологии строительства, непроектными режимами работы водосбросов.

Более серьезные проблемы возникли при пропускании через водосбросы паводковых вод в штатном режиме. Конструкция и качество строительства водобойных колодцев оказались не способными работать в штатном режиме.

Так в 1985 году перед пропуском половодья водобойный колодец был осушен, обследован и очищен, значительных повреждений в нём обнаружено не было. После пропуска половодья, в ноябре 1988 года при осмотре водобойного колодца было выявлено наличие в нём значительных разрушений. На площади около 70 % поверхности дна колодца плиты крепления были полностью разрушены и выброшены потоком за водобойную стенку. На площади, составляющей порядка 25 % от общей площади дна колодца, были разрушены все плиты крепления, бетонная подготовка и скала на глубину от 1 до 6 м ниже основания плит.

Причины разрушения изучались различными комиссиями, объединяя выводы которых, можно отметить следующее.

Плиты, покрывавшие дно водобоя, были плохо закреплены. Между ними оставались незагерметизированные трещины, в которые проникала вода. При починке кавитационных повреждений водобойного колодца в 1981 году бетонная пломба была выполнена из некачественного бетона, места ее сопряжения с плитами крепления не были загерметизированы. Кроме того, при открытии затворов водосброса были использованы непроектные схемы сосредоточенного сброса воды в водобойный колодец.

При ремонте водобойного колодца вместо плит толщиной 2,5 м были уложены блоки толщиной 4 – 8 м. Устойчивость блоков обеспечивалась за счёт их веса, цементации основания и использования анкеров. При этом разборка старого крепления и подготовка основания для нового проводилась с широким использованием буровзрывных работ.

В 1987 годуэксплуатационные водосбросы не использовались. В1988 годудля пропуска летнего паводка с15 июляпо19 августаоткрывалось до пяти эксплуатационных водосбросов, максимальный расход достигал 5450 м³/с. После осушения колодца в сентябре 1988 года были обнаружены значительные разрушения его днища в центральной части. Общая площадь повреждений составила 2250 м², что соответствует примерно 14 % общей площади дна колодца. В зоне наибольших разрушений площадью 890 м² бетонное крепление было разрушено полностью, до скального грунта, с образованием в последнем воронки размыва. Бетонные блоки крепления весом до 700 тонн каждый были либо разрушены, либо отброшены потоком к водобойной стенке.

Причиной разрушения водобойного колодца являлось образование трещин в блоках первой очереди реконструкции в ходе подготовки основания под блоки второй очереди с применением широкомасштабных буровзрывных работ. Проникновение воды под давлением в трещины через открытые швы между блоками привело к разрушению повреждённых блоков первой очереди, что в свою очередь привело к отрыву от основания неповреждённых блоков второй очереди, часть из которых (толщиной 6 м и более) к тому же не была закреплена анкерами. Усугубило ситуацию включение водосбросов 43 и 44 секций с полным открытием затворов 1 августа1988 года, что привело к концентрации сбросов на «потревоженной», но ещё находившейся на месте части крепления, после чего в короткие сроки произошло разрушение крепления.

Разрушения в водобойном колодце после паводка 1988 года устранялись путём установки блоков, аналогичных блокам первой и второй очереди, но с герметизацией швов металлическими шпонкамии обязательной установкой анкеров. Кроме того, во всех сохранившихся блоках крепления второй очереди толщиной 6 метров и более также устанавливались анкера из расчёта один анкер на 4 м² площади. Была проведена цементация швов блоков всех трёх очередей. Взрывные работы при подготовке основания для установки блоков были исключены. Работы по реконструкции водобойного колодца были завершены к 1991 году, всего было уложено 10 630 м³ бетона, установлено 221 т пассивных анкеров и сеток и 46,7 т (300 шт.) предварительно-напряжённых анкеров. После завершения реконструкции, в ходе дальнейшей эксплуатации значительных разрушений в водобойном колодце не наблюдалось.

После выявления повторных разрушений в водобойном колодце в 1988 году было предложено, с целью снижения нагрузок на водобойный колодец, рассмотреть возможность сооружения дополнительного водосброса тоннельного типа пропускной способностью 4000-5000 м³/с.

Строительство берегового водосброса было начато 18 марта 2005 года. Строительные работы по сооружению первой очереди берегового водосброса, включающей входной оголовок, правый безнапорный туннель, пятиступенчатый перепад и отводящий канал, были завершены к 1 июня2010 года. Гидравлические испытания первой очереди были проведены в течение трёх дней, начиная с28 сентября2010 года. Завершение строительства берегового водосброса намечено на2011 год.

Повышенный уровень фильтрации через напорный фронт.

После наполнения водохранилища до отметки НПУ в 1990 году резко увеличился фильтрационный расход через тело плотины и зону контакта плотины и основания. Проект допускал уровень фильтрации в основании в пределах 100 – 150 л/с, а в теле плотины фильтрация вообще должна была быть незначительной. Тем не менее, в 1995 году была зафиксирована фильтрация в количестве 549 л/с в основании и 457 л/с в теле плотины. Причиной увеличения фильтрации явилось образование трещин в плотине, трещинообразование в месте контакта бетона плотины и её основания, а также разуплотнение пород основания. В качестве причин данного явления называются несовершенство использованных при проектировании расчётных методик и отступления от проекта при строительстве плотины (интенсификация строительства первого столба плотины при отставании в бетонировании других столбов).

В 1991-1994 годах предпринимались попытки заделки трещин в плотине и основании с помощью цементации, которые не привели к успеху – цементирующий состав вымывался из трещин. В 1993 годубыло принято решение воспользоваться услугамифранцузскойфирмы «Solétanche Bachy» («Солетанш Баши»), имевшей опыт ремонтных работ на гидротехнических сооружениях с использованиемэпоксидных смол. Работы по инъецированию трещин в бетоне плотины с помощью эпоксидного состава «Родур-624» были проведены в 1996-1997 годах и показали хороший результат – фильтрация была подавлена до 5 л/с и менее. Опираясь на этот опыт, в1998-2002 годахуже с помощью отечественного состава КДС-173 (компаунд эпоксидной смолы и модифицированногокаучука) были проведены работы по инъецированию трещин в основании плотины, также с положительным результатом – фильтрация снизилась в несколько раз, упав до значений меньших, чем предусмотрено проектом. Всего на ремонтные работы в плотине и основании было затрачено 334 тонны эпоксидных составов.

С 1997 года, после завершения заделки трещин в плотине, с целью недопущения их раскрытия было принято решение снизить отметку нормального подпорного уровня на 1 метр (с 540 до 539 м), а отметку форсированного подпорного уровня – на 4,5 м (с 544,5 м до 540 м). В 2006 году при прохождении сильного летнего дождевого паводка холостые сбросы через эксплуатационный водосброс достигали 5270 м³/с, существенных повреждений в водобойном колодце после его осушения обнаружено не было. Значительные объёмы сбросов через эксплуатационный водосброс (до 4906 м³/с) имели место и в 2010 году, при пропуске многоводного паводка обеспеченностью 3-5 %. После аварии в августе 2009 года эксплуатационный водосброс работал в течение более чем 13 месяцев, с 17 августа2009 года по29 сентября2010 года, пропустив 55,6 км³ воды без каких-либо повреждений.

В настоящее время действующая Саяно-Шушенская ГЭС имеет следующие характеристики.

Высота плотины составляет 245 м, ширина основания 110 м, а длина по гребню 1066 м.

Состав сооружений ГЭС:

    бетонная арочно-гравитационная плотина высотой 245 м, длиной 1066 м, шириной в основании – 110 м, шириной по гребню 25 м. Плотина включает левобережную глухую часть длиной 246,1 м, станционную часть длиной 331,8 м, водосливную часть длиной 189,6 м и правобережную глухую часть длиной 298,5 м;

    приплотинное здание ГЭС;

    береговой водосброс.

Мощность ГЭС – 6400 МВт, среднегодовая выработка 23,5 млрд. кВт·ч. В 2006 году из-за крупного летнего паводка электростанция выработала 26,8 млрд. кВт·ч электроэнергии.

В здании ГЭС размещено 10 радиально-осевых гидроагрегатов мощностью по 640 МВт, работающих при расчетном напоре 194 м. Максимальный статический напор на плотину – 220 м.

Ниже Саяно-Шушенской ГЭС расположен её контррегулятор - Майнская ГЭС мощностью 321 МВт, организационно входящая в состав Саяно-Шушенской ГЭС.

Плотина ГЭС образует крупное Саяно-Шушенское водохранилище полным объёмом 31,34 куб. км (полезный объём – 15,34 куб. км) и площадью 621 кв. км.

Перекрытие Енисея

Перекрытие Енисея

Рабочие колеса турбин на баржах доставляют к месту

строительства станции

Саяно-Шушенская ГЭС – ночная иллюминация

Саяно-Шушенская ГЭС – вид на плотину

В настоящее время в России действуют 13 гидроэлектростанций, чья мощность превышает 1000 МВт, а также свыше сотни менее мощных ГЭС. Наш рейтинг составлен именно по мощности станций и выглядит следующим образом:

1. Саяно-Шушенская ГЭС (6400 МВт)

Пока же самая большая ГЭС в России - Саяно-Шушенская им. Непорожнего, на начало этого года она была 14-й в мире среди действующих ГЭС. Она построена на Енисее, недалеко от посёлка Черёмушки и Саяногорска, на границе между Хакасией и Красноярским краем. Это первая ступень Енисейского каскада ГЭС. Её арочно-гравитационная плотина имеет высоту 242 м, она самая высокая в России и на одном из первых мест в мире.
В названии станции фигурирует название Саянских гор и находящегося не так далеко села Шушенское, получившего во времена СССР широкую известность как место, куда был сослан В. Ульянов (Ленин).
Строить эту ГЭС начали в 1963 году, а формально закончили лишь в 2000 году. Уже по ходу строительства плотины возникали проблемы, такие как возникновение трещин в теле плотины и разрушение водосбросных сооружений, которые успешно преодолевались. Но 17 августа 2009 года здесь случилась крупнейшая в российской гидроэнергетике катастрофа, унёсшая жизни 75 человек. Восстановили станцию лишь к концу 2014 года.

2. Красноярская ГЭС (6000 МВт)

Красноярская ГЭС им. 50-летия СССР также стоит на Енисее, возле Дивногорска в Красноярском крае и является третьим звеном Енисейского каскада ГЭС. В Красноярском гидроузле есть судоподъёмник - единственный в России.
Первые два гидроагрегата здесь запустили в конце 1967 года, в следующем году к ним прибавились ещё 4, ещё один в 1970 году, а последние в 1971 году. Приём в эксплуатацию Красноярской ГЭС государственной комиссией прошёл с отметкой «отлично». В 1976 году началась пробная эксплуатация судоподъёмника, а с 1982 года он заработал на постоянной основе.
Красноярская ГЭС является важным центром нагрузок единой энергосистемы Сибири, обеспечивает стабильное снабжение Красноярского края электроэнергией. Она сглаживает неравномерное потребление энергии, особенно в случаях аварий. Так, после катастрофы на Саяно-Шушенской ГЭС, по команде системного оператора нагрузка на Красноярскую ГЭС возросла с 2450 МВт до 3932 МВт. Красноярская ГЭС производит свыше 30% электроэнергии Красноярского края. Но её функция состоит не только в выработке энергии, но и в защите лежащих ниже земель от наводнений, срезая пики паводков, она задерживает их в водохранилище. Она обеспечивает водой соседние населённые пункты, работой речной флот как выше, так и ниже плотины.


Россия по числу крытых ледовых площадок в настоящее время находится на третьем месте в мире, всего в стране их насчитывается 419. При этом ледовые дво...

3. Братская ГЭС (4500 МВт)

Братская ГЭС им. 50-летия Великого Октября находится в Иркутской области, на Ангаре возле Братска. Является второй ступенью Ангарского каскада ГЭС. Плотина станции удерживает Братское водохранилище - крупнейшее в стране и одно из самых больших в мире по полезному объёму.

В 1965 году по плотине этой ГЭС проследовали первые железнодорожные составы, а месяц спустя открыто было и автомобильное движение. Когда в конце 1966 года под промышленную нагрузку встал 18-й гидроагрегат станции, она стала крупнейшей на тот момент в мире. В 2006 года на Братской ГЭС начата последовательная модернизация гидроагрегатов.
13 января 2010 года на Братской ГЭС был выработан рекордный для Евразии триллионный киловатт электроэнергии. Вклад Братской ГЭС в энергозону Сибири нельзя переоценить. Она стала базовым элементом Братского территориально-производственного комплекса и главным поставщиком энергии для Братского алюминиевого завода.

4. Усть-Илимская ГЭС (3840 МВт)

Усть-Илимская гидроэлектростанция была построена в Иркусткой области возле города Усть-Илимск на реке Ангара. Она стала третьей ступенью Ангарского каскада гидроэлектростанций, дополнив Иркутскую и Братскую ГЭС.
Строить её начали в 1963 году, а закончили в 1980 году, хотя уже в 1979 году она частично была запущена в эксплуатацию. Эта гидроэлектростанция имеет огромное значение для обеспечения устойчивости всей сибирской энергосистемы. Большую часть её энергии потребляют крайне энергоёмкие алюминиевые заводы, а также лесохимические предприятия. На базе этой гидроэлектростанции был создан Усть-Илимский территориально-производственный комплекс. В 2012 году эта станция выработала 32,3% общего количества энергии, полученной от всех электростанций Иркутской области.


Футбол в России остаётся любимым видом спорта. Большинство болельщиков смотрит его по телевизору, но есть и такие, кто воочию хочет насмотреться на зр...

5. Богучанская ГЭС (2997 МВт)

В Красноярском крае неподалёку от города Кодинска в Кежемском районе на Ангаре была построена ещё одна электростанция - Богучанская, которая также вошла в Ангарский каскад в качестве последней четвёртой ступени. По своей проектной мощности она встала в ряд крупнейших российских гидроэлектростанций.
Строительство этого гидроузла велось в период с 1974 по 2014 год - это самый большой долгострой в истории отечественной гидроэнергетики. В российский период истории эту ГЭС строили совместно «Русал» и «Русгидро» в соответствии с госпрограммой комплексного развития нижнего Приангарья. В октябре 2012 года состоялся ввод в действие первых гидроагрегатов станции, а девятый - последний заработал в конце декабря 2014 года. В июле 2015 года гидроэлектростанцию вывели на проектную мощность после того, как её водохранилище заполнилось водой до проектного уровня в 208 метров.
Появление этой ГЭС должно положительно повлиять на экономическое развитие региона, а большую часть выданной ей электроэнергии собираются направить на строящийся Богучанский алюминиевый завод и прочие перспективные предприятия. Общественные организации, такие как «Гринпис» и «Всемирный фонд дикой природы», критиковали строительство Богучанской ГЭС, поскольку оно велось без предварительной оценки воздействия на окружающую среду.

6. Волжская ГЭС (2671 МВт)

Ныне Волжская, а ранее Сталинградская и Волгоградская ГЭС построена на реке Волге на территории Волгоградской области. Она является крупнейшей в европейской части России, а на протяжении 1960-63 годов была крупнейшей в мире электростанцией. Является нижней ступенью Волжско-Камского каскада ГЭС. На правом берегу находится район Волгограда, а на левом - город Волжский.
Эту ГЭС строили с 1952 по 1961 год, она относится к средненапорной ГЭС руслового типа. Ввод её в строй решил многие вопросы энергоснабжения Донбасса и Нижнего Поволжья, объединения энергосистем центра, юга и Поволжья. В Нижнем Поволжье появилась энергетическая база для продолжения развития народного хозяйства. Благодаря Волжской ГЭС был завершён глубоководный водный путь от Саратова до Астрахани. По плотине ГЭС организовано постоянное автомобильное и железнодорожное движение через Волгу, которое обеспечило кратчайшую связь между собой районов Поволжья. Водохранилище ГЭС также используется для обводнения и орошения местных засушливых земель.


В мире существуют тысячи разнообразных профессий, а люди, ими занимающиеся, получают совсем не одинаковую зарплату. Причиной тому служат самые разнооб...

7. Жигулёвская ГЭС (3467 МВт)

Сначала Волжская, потом Куйбышевская, а ныне Жигулёвская ГЭС стоит на Волге в Самарской области возле Жигулёвска и является 6 ступенью Волжско-Камского каскада ГЭС. Это вторая в Европе ГЭС по мощности. Важна не только выработкой электричества, но и водоснабжением, обеспечением крупнотоннажного судоходства, защитой от наводнений. Её водохранилище - основное в водорегулировании этого каскада ГЭС.
Эта станция строилась с 1950 по 1957 годы. Особенностью геологии данного места стало сильная разница в берегах Волги: правый высокий, обрывистый, сложен из трещиноватых известняково-доломитовых пород, а левый - низкий песчаный с линзами и прослойками из суглинков.
Жигулёвская ГЭС покрывает пиковые нагрузки и стабилизирует частоту Единой энергосистемы России. Её самое крупное в каскаде водохранилище регулирует сток волжской воды, позволяя более эффективно её использовать идущим следом гидроэлектростанциям, создаёт судоходную глубину и позволяет орошать засушливые земли.

8. Бурейская ГЭС (2010 МВт)

Эта крупнейшая на Дальнем Востоке ГЭС находится в Амурской области на реке Бурее, возле пос. Талакан. Её водохранилище находится на территории Хабаровского края и Амурской области. Является первой ступенью Бурейского каскада ГЭС. На полную мощность её вывели в 2011 году, а в 2014 году полностью сдали в эксплуатацию.
С её постройкой были решены важные задачи: обеспечить дефицитной электроэнергией юг Дальнего Востока, сделать более равномерной нагрузку на объединенную энергетическую систему Востока, повысить надёжность электроснабжения, избавиться от наводнений в поймах среднего Амура и Буреи, что позволит добавить к сельскохозяйственным землям 15000 га территории, продавать излишек энергии в Китай.


Все мы знаем, что к ценным монетам относятся древние, юбилейные и памятные дензнаки, но многих может удивить, что могут попасть в их число и те, что в...

9. Саратовская ГЭС (1404 МВт)

Саратовская ГЭС построена возле волжского города Балаково и является 7 ступенью Волжско-Камского каскада ГЭС. У неё отсутствует водосбросная плотина, но самый длинный в стране машинный зал с разборной кровлей. Здесь работают 24 агрегата трёх типов, в том числе крупнейшие в России. ГЭС обеспечивает также орошение засушливых земель, водоснабжение, крупнотоннажное судоходство. Станция предназначена для покрытия пиковых нагрузок Объединённой энергосистемы Центра и Поволжья, является аварийным резервом мощности.
После её ввода в действие Саратовская область вместо энергодефицитной стала энергоизбыточной. За время своей работы она выработала свыше 250 млрд кВт возобновляемой электроэнергии, что позволило сэкономить много ископаемого топлива и предотвратить выброс в атмосферу огромного количества загрязняющих компонентов.

10. Чебоксарская ГЭС (1374 МВт)

Чебоксарская ГЭС стоит на Волге в Чувашии, неподалёку от города Новочебоксарск, за ней образовалось Чебоксарское водохранилище, которое разлилось по территории сразу трёх субъектов России - Нижегородской области и республик Марий Эл, и Чувашия. Чебоксарская ГЭС является пятой ступенью Волжского каскада гидроэлектростанций (на момент своего создания она была там последней). Её установленная мощность составляет 1404 МВт, по этому показателю она является одной из крупнейших российских гидроэлектростанций.
Чебоксарский гидроузел начали строить в 1968 году, но он не завершен и по сей день. Причиной тому послужили разногласия между соседними регионами, настаивающими на разных отметках уровня воды в её водохранилище. Поэтому с 1981 года она работает вполсилы на отметке 63 метра, при этом зона водохранилища остаётся не полностью обустроенной, а это выливается в различные экологические и экономические проблемы. Против поднятия уровня воды в водохранилище выступают регионы, которые лишатся в результате этого части своей земли. Помимо местных официальных властей, критика слышна также от различных общественных организаций.

ГЭС - это гидроэлектростанция, преобразующая энергию водного потока в электрическую. Поток воды, падая на лопасти, вращает турбины, которые, в свою очередь, приводят в движение генераторы, преобразующие механическую энергию в электрическую. Гидроэлектростанции сооружаются на руслах рек, при этом обычно строятся плотины и водохранилища.

Принцип работы

Основа работы ГЭС - это энергия падающей воды. Из-за разности уровней речная вода образует непрерывный поток от истока к устью. Плотина - неотъемлемая часть практически всех гидроэлектростанций, перекрывает движение воды в русле реки. Перед плотиной образуется водохранилище, создавая значительную разницу уровня воды до и после нее.

Верхний и нижний уровень воды называют бьефом, а разницу между ними - высотой падения или напором. Принцип работы достаточно прост. На нижнем бьефе устанавливается турбина, на лопасти которой направляется поток с верхнего бьефа. Падающий поток воды приводит в движение турбину, а она через механическую связь вращает ротор электрического генератора. Чем больше напор и количество воды, проходящее через турбины, тем выше мощность гидроэлектростанции. Коэффициент полезного действия составляет около 85%.

Особенности

Существует три фактора эффективного производства энергии на гидроэлектростанциях:

  • Круглогодичная гарантированная водообеспеченность.
  • Благоприятствующий рельеф. Наличие каньонов и перепадов способствуют гидростроительству.
  • Больший уклон реки.

Эксплуатация гидроэлектростанция имеет несколько, в том числе сравнительных особенностей:

  • Себестоимость производимой электроэнергии существенно меньше, чем на других видах электростанций.
  • Возобновляемый источник энергии.
  • В зависимости от количества энергии, которое должна производить ГЭС, ее генераторы можно быстро включать и выключать.
  • По сравнению с другими видами электростанций ГЭС намного меньше влияет на воздушную среду.
  • В основном ГЭС - это удаленные от потребителей объекты.
  • Строительство гидроэлектростанций очень капиталоемкое.
  • Водохранилища занимают большие территории.
  • Строительство плотин и устройство водохранилищ перекрывает многим видам рыб пути к нерестилищам, что кардинально меняет характер рыбного хозяйства. Но при этом в самом водохранилище устраиваются рыбоводческие хозяйства, увеличиваются запасы рыбы.

Виды

Гидроэлектростанции разделяют по характеру возведенных сооружений:

  • Приплотинные ГЭС - это самые распространенные в мире станции, в которых напор создается плотиной. Строятся на реках с преимущественно небольшим уклоном. Для создания большого напора под водохранилища затопляются значительные территории.
  • Деривационные - станции, сооружаемые на горных реках с большим уклоном. Нужный напор создается в обходных (деривационных) каналах при сравнительно малом расходе воды. Часть потока реки через водозабор направляется в трубопровод, в котором создается напор, что приводит в движение турбину.
  • Гидроаккумулирующие станции. Они помогают справиться энергосистеме с пиковыми нагрузками. Гидроагрегаты таких станций способны работать в насосном и генераторном режиме. Состоят из двух водохранилищ в разных уровнях, соединенных трубопроводом с гидроагрегатом внутри. При высоких нагрузках вода сбрасывается из верхнего водохранилища в более низкое, при этом происходит вращение турбины и вырабатывается электричество. При низком спросе вода перекачивается назад из низкого хранилища в более высокое.

Гидроэнергетика России

На сегодняшний день в России суммарно вырабатывается более 100 МВт электроэнергии на 102 гидроэлектростанциях. Общая мощность всех гидроагрегатов ГЭС России составляет порядка 45 млн кВт, что соответствует пятому месту в мире. Доля ГЭС в общем количестве вырабатываемой электроэнергии в России составляет 21 % - 165 млрд кВт*ч/год, что также соответствует 5 месту в мире. По количеству потенциальных гидроэнергоресурсов Россия стоит на втором месте после Китая с показателем 852 млрд кВт*ч, но при этом степень их освоения составляет лишь 20%, что существенно ниже, чем практически у всех стран мира, в том числе развивающихся. Для освоения гидропотенциала и развития российской энергетики в 2004 году была создана Федеральная программа по обеспечению надежной эксплуатации функционирующих гидроэлектростанций, завершение действующих строек, проектирование и возведение новых станций.

Список крупнейших ГЭС России

  • Красноярская ГЭС — г. Дивногорск, на реке Енисей.
  • Братская ГЭС — г. Братск, р. Ангара.
  • Усть-Илимская — г. Усть-Илимск, р. Ангара.
  • Саяно-Шушенская ГЭС — г. Саяногорск.
  • Богучанская ГЭС — на реке. Ангара.
  • Жигулёвская ГЭС — г. Жигулевск, р. Волга.
  • Волжская ГЭС — г. Волжский, Волгоградская обл, река Волга.
  • Чебоксарская — г. Новочебоксарск, река Волга.
  • Бурейская ГЭС — пос. Талакан, река Бурея.
  • Нижнекамская ГЭС — Челны, р. Кама.
  • Воткинская — г. Чайковский, р. Кама.
  • Чиркейская — река. Сулак.
  • Загорская ГАЭС — река. Кунья.
  • Зейская — г. Зея, р. Зея.
  • Саратовская ГЭС — река. Волга.

Волжская ГЭС

В прошлом Сталинградская и Волгоградская ГЭС, а ныне «Волжская», расположенная в одноименном городе Волжский на реке Волга, средненапорная станция руслового типа. На сегодняшний день считается крупнейшей гидроэлектростанцией в Европе. Количество гидроагрегатов - 22, электрическая мощность - 2592,5 МВт, среднегодовое количество вырабатываемой электроэнергии 11,1 млрд кВт*ч. Пропускная способность гидроузла - 25000 м3/с. Большая часть вырабатываемой электроэнергии поставляется местным потребителям.

Возведение ГЭС стартовало в 1950 году. Пуск первого гидроагрегата был осуществлен в декабре 1958. В полном объеме Волжская гидроэлектростанция заработала в сентябре 1961 года. Ввод в эксплуатацию сыграл важнейшую роль в объединении значимых энергосистем Поволжья, Центра, Юга и энергоснабжения Нижнего Поволжья и Донбасса. Уже в 2000-х годах было произведено несколько модернизаций, что позволило увеличить общую мощность станции. Кроме производства электроэнергии Волжская ГЭС используется для орошения засушливых земельных массивов Заволжья. На сооружениях гидроузла устроены автодорожные и железнодорожные переходы через Волгу, обеспечивающие связь районов Поволжья между собой.