Технология ручной дуговой сварки низкоуглеродистой стали. Сварка углеродистых сталей — виды и технологии сварки. Особенности сваривания изделий из высоколегированных сталей

Поговорим о газовой сварке углеродистых сталей.

Углеродистая сталь - это сплав железа с углеродом, с содержанием углерода до 2%. По назначению углеродистые стали разделяют на конструкционные (с содержанием углерода в сотых долях процента) и инструментальные (с содержанием углерода в десятых долях процента). На производстве в основном работают с низкоуглеродистыми сталями.

Углеродистые стали делятся на:

  • низкоуглеродистые стали (содержание углерода до 0,25%);
  • среднеуглеродистые стали (содержание углерода от 0,25% до 0,6%);
  • высокоуглеродистые стали (содержание углерода 0,6% - 1,7%).

Низкоуглеродистые стали

Данные стали имеют хорошую свариваемость ацетиленокислородным пламенем без применения флюса. Чем меньше содержание углерода в свариваемом металле, тем лучше будет происходить процесс сварки. В металлах с увеличенным содержанием углерода появляется вероятность образования хрупких структур, а также пористости металла шва. Улучшение структуры достигается путем проковки металла шва при температуре красного каления и медленным охлаждением. Когда сварное соединение должно работать на растяжение, изгиб и удар, это способ является особенно существенным. Для того, что бы устранить пористость металла шва нужно использовать присадочный металл с пониженным содержанием углерода (по отношению к основному металлу). В основном газовую сварку применяют для сварки тонколистового металла толщиной до 5 мм. Для больших толщин металла, сварку наиболее правильно проводить способами дуговой сварки плавлением. Так же и сваркой плавящимся электродом в среде углекислого газа. Пропан-бутан, природный газ и другие (газы-заменители ацетилена), возможны их использование для сварки металла из низкоуглеродистой стали, которые не подлежат сдаче Госгортехнадзору, так как зона термического влияния увеличивается примерно на 30%, в сравнении со сваркой ацетиленокислородным пламенем, так же снижаются механические свойства сварного соединения.

Среднеуглеродистые стали

У данных сталей присутствует свойство закаливаться после нагрева и быстрого охлаждения. Например, стали с содержанием углерода более 0,4% выгоднее сваривать дуговой сваркой плавлением, так же нельзя исключать возможность сварки ацетиленокислородным пламенем. Чтобы получить добротное сварное соединение сварочный процесс следует делать с максимальной скоростью, с предварительной и последующей термообработкой. Для газовой сварки сталей данного класса, следует применять присадочную проволоку с раскислителями (марганцем и кремнием), это делается для того, чтобы избежать выгорания углерода и образования пористости шва.

Высокоуглеродистые стали

Данные стали плохо свариваются газовой сваркой из-за сильного выгорания углерода и образования закалочных структур. Металла шва обычно содержит газовые раковины и включения. Сваривание изделия дуговой сваркой обеспечит значительно лучшие результаты.

Свариваемость углеродистых сталей газовым пламенем

Тип стали Содержание углерода в сплаве, % Назначение и область применения Оценка свариваемости
Низкоуглеродистые стали 0,06-0,15 Котельная сталь, резервуары, цельнотянутые трубы Хорошая свариваемость, шов не закаливается
Низкоуглеродистые стали 0,15-0,25 Литая сталь, трубы, котлы, приводные валы, бочки и т.д. Хорошая свариваемость, шов слегка закаливается, но не обрабатывается режущим инструментом
Среднеуглеродистые стали 0,25-0,45 Оси, шатуны, шестерни и другие детали машины Удовлетворительная свариваемость. Качественное сварное соединение при предварительном нагреве и последующей термообработке
Среднеуглеродистые стали 0,45-0,6 Инструмент, молоты, шестерни и т.д. Удовлетворительная свариваемость при использовании специального флюса и термообработки
Высокоуглеродистые стали 0,6-1,7 Пуансоны, штампы, рельсы, крестовины и т.д. Плохая свариваемость. Рекомендуется пайка или наплавка

Основные параметры и режимы газовой сварки низкоуглеродистых и среднеуглеродистых сталей

Горючий газ Присадочный металл Флюс Удельная мощность пламени, л/ч на 1 мм Параметры режима сварка Термообработка Примечание
Ацетилен Св-08; Св-08А; Св-12ГС; Св-08ГС Св-08Г2С Не требуется 100-130 (при левом способе сварки) 130-150 (при правом способе сварки) Нормальное (β=1,0÷1,1) Не требуется Сводка в любых пространственных положениях
Пропан-бутан Св-12ГС; Св-08ГА; Св-08Г2С То же 60-75 (при левом способе сварки) Нормальное или слегка окислительное (β=3,5÷3,8) То же
Городской газ Св-12ГС Не требуется 180-220 (при левом способе сварки) Нормальное или слегка окислительное (β=1,5÷1,7) Не требуется Только для деталей, не подлежащих сдаче Госгортехнадзору
Ацетилен Св-08ГА; Св-10ГА; Св-08ГС Прокаленная бура (для сталей с содержанием углерода 0,5-0,6%) 75-90 (при левом способе сварки) слегка науглероживающее (β=1,5÷1,7) При сварке металла толщиной менее 3 мм общий предварительный нагрев изделия до 300-400 °С либо местный нагрев до 650-700 °С. После сварки высокотемпературный отпуск при 600-650 °С с последующим охлаждением на воздухе Сварка только при положительных температурах

Углеродистыми конструкционными (машиноподелочными или строительными) называют стали, которые содержат примерно до 2% углерода. Для начала нужно знать, что стали наполненные:

  • до 0,25% называются низкоуглеродистыми;
  • от 0,26% до 0,6 - среднеуглеродистыми;
  • от 0,6 до 2% — высокоуглеродистыми.

И все они не имеют легирующих элементов. То, что выше этого содержания, называется чугуном. Углерод определяет прочностные характеристики и напрямую влияет на свариваемость сталей.

Состав, назначение и применение

Очень широкое применение эти материалы находят в народном хозяйстве. Начиная от изготовления простых гвоздей до высокопрочных и особо ответственных конструкций.

Разговор здесь будет о работе со сталями насыщенными средним количеством углерода. Это такие материалы, где его доля колеблется от 0,25% до 0,45%. Такой процент есть основное отличие от низкоуглеродистых сталей. Он придает твердость стали, но делает свариваемость хуже. Применяется в судостроении, машиностроении. Поскольку все углеродистые стали классифицируются еще и по качеству, то здесь еще присутствуют добавки марганца от 0,7% до 1%. В промышленности среднеуглеродистую сталь применяют в нормализованном состоянии, это когда перед сварочным процессом прокат проходит определенную термическую обработку. В сварно-литых и сварно-кованных конструкциях обычно используют сталь 35 или сталь 40.

Характерные черты среднеуглеродистой стали

Неприятной особенностью данных материалов, является появление закалочных структур в шве, около шва и зоне термического влияния (ЗТВ). Эти «нехорошие» структуры почти гарантируют опасные предпосылки для «охрупчивания» соединения. Значит, выбирая марку стали, изготовитель не только ориентируется на прочностные характеристики ее, но и на то как «поведет» себя сварное соединение при подготовке, в процессе изготовления и каковы будут механические свойства у соединения после сварки и при эксплуатации изделия.

Иногда разрушения происходят из-за того, что в соединении появляются сильные остаточные напряжения и очень снижается пластичность металла. Это как раз и есть результат неправильного выбора материала, способа сварки и сварочной технологии.

Понятие свариваемости

Здесь нужно понимать "умение" материала переносить высокотемпературные условия при определенном сварочном процессе без появления в соединении участков металла с "низкой пластикой", которые "провоцируют" возникновение трещин, или то, что соединения, в процессе эксплуатации разрушаются. Проще говоря, это способность металлических деталей к соединению посредством теплового воздействия, без ухудшения механических свойств сварного изделия.

Меры, обязательные к исполнению, при подготовке этой стали к сварке :

  • применять основной материал только регламентированный, например: спокойную сталь;
  • способы сварки применят только те, которые гарантируют шву требуемые характеристики (сварка покрытыми электродами, под флюсом, в защитных газах);
  • грамотным образом проектировать сварные конструкции (исключить контрастные переходы от одного сечения к другому, не допускать "скучивания" швов на малом участке изделия, по возможности отдавать приоритет стыковым соединениям);
  • особое внимание к качеству сборки (минимизировать зазоры и смещения, не допускать натяжения конструкций);
  • стараться применять термообработку, она снимает излишние внутренние напряжения.

Процесс и виды сварки

Как уже было сказано выше, значительное содержание углерода, затрудняет сварочный процесс. Для преодоления вышеуказанных сложностей и предания устойчивости металла шва против трещин при любой сварке плавлением необходимо снижать уровень углерода в металле шва. Для этого используют сварочные материалы с низким содержанием углерода, уменьшают количество основного металла в соединении. Попросту кромкам придают соответствующую форму разделки.

Желательно обеспечить предварительный подогрев до температуры 250-3000 С. За счет этого получается почти исключить возникновения закалочных структур в ЗТВ (околошовная зона).

Механизированная и

Нужно использовать такие режимы, при которых проплавление основного металла было бы минимальным, а коэффициент формы шва максимальным. Увеличивают долю электродного металла в шве. При полуавтоматической работе это достигается применением проволоки малого диаметра и минимального тока. При этом лучше работать постоянным током прямой полярности.

Так же неплохо применят легирование. Для достижения этого достаточно применять проволоку с пониженным содержанием серы и фосфора, с добавлением кремния и марганца. При автоматической сварочной работе легирование происходит за счет флюса.

Ручная

Для этой сварки работают электродами с основным покрытием. Они обеспечивают легирование, шов становится устойчив против трещин. Но чтобы избежать хрупких закалочных структур в ЗТВ, желательно медленное остывание изделия. Для этого снижают скорость сварки, предварительный подогрев и применение двух-и более раздвинутых дуг. Чем больше содержания углерода, тем выше должна быть температура подогрева при сварке (сопутствующий подогрев). Но все равно, когда при всех перечисленных приемах, полностью не удается придать нужную пластичность соединению, применяют закалку с отпуском.

Электрошлаковый способ

Это особый способ сварки в котором используется для нагрева зоны плавления — шлаковая ванна. Нагрев осуществляется электрическим током. Здесь, благодаря широкой возможности изменять коэффициент формы ванны и медленному остыванию, создаются условия для создания высококачественного соединения. За счет подачи проволоки со скоростью не превышающей критического значения, обеспечивается высокая стойкость против кристаллических трещин.

Проблемы здесь могут возникать, если содержание углерода превысит 0,33%. Тогда нужно использовать проволоку с марганцем и кремнием.

Сварка в углекислом газе

Технология этого вида во многом схожа со сваркой ручной дуговой или со сваркой под флюсом. Так же в основе лежит снижение процента основного металла в шве и обеспечении благоприятного провара. Но в массовом производстве используется нечасто.

Важно помнить, что при любом способе сварки среднеуглеродистой стали, важнейшим пунктом в подготовке и процессе является придание нужной пластичности соединению. А способ, как обеспечить эту пластичность уже выбирается исходя из конкретной ситуации при которой будет проходить сварка.

Визуальный контроль сварных соединений

Контроль сварных соединений — есть неотъемлемая часть всего технологического сварочного процесса.

Визуальный контроль - это один из множества методов, которым подвергаются все без исключения сварные соединения. И не только. Работа по визуальному контролю начинается уже на стадии приемки основных и сварочных материалов в сварочном производстве. Но в этой статье будет рассмотрен только визуальный контроль. Но для начала необходимо понять задачи, которые он решает и на, что нацелен.

Дефекты сварных соединений

Дефекты, в сварочном производстве, определяются как несоответствие нормам и правилам по которым изготавливается соединение.

Эти «косяки», которые возникли в самом процессе сварки делятся на внутренние и наружные. Наружные как раз и выявляются визуальным осмотром соединения. Забегая вперед следует уточнить, что собственно как отдельного метода, визуального контроля не существует. Он всегда идет в связке с измерением. В производстве так и называется - визуальный и измерительный контроль. Ну так вот, чтобы приступить к измерению, необходимо выявить визуально дефекты, зафиксировать их, а уж при измерении определить -допустимы или нет выявленные несоответствия и как они будут влиять на работу изделия. Выявлять дефекты следует уже на стадии подготовки к сварке. Так как они напрямую влияют на качество конечного сварочного продукта.

Дефекты при подготовке к сварке, причины их возникновения и их влияние на качество соединения

Несоответствия при подготовке и сборке приводят к последующим сварочным дефектам. Например: неверный угол скоса кромок, большое или наоборот маленькое притупление, смещение по оси, несовпадение стыкуемых плоскостей, увеличенный зазор и геометрия шва недопустимо нарушена!

Необработанные и не зачищенные кромки, сырая поверхность или не прокаленные электроды, расслоения, неправильно выбранный режим сварки и поры, свищи и непровары по шву обеспечены!

Завышенная сила тока, быстрое движение электрода вдоль шва и подрезы нам улыбаются!

Резко оборвали дугу - в конце шва обязательно будет не заваренный кратер.

Все дефекты создают локальную концентрацию напряжения, уменьшают полезное сечение шва ослабляя конструкцию, а в некоторых случаях даже распространяются дальше по шву. Например трещины и микротрещины. Понятно, что такая конструкция не выдержит даже минимального срока эксплуатации.

Правильность сборки сопровождаются внешним осмотром и измерением при помощи специальных поверенных приспособлений, шаблонов и эталонов. А форма и размеры швов задаются техническими условиями, где оговаривается число проходов и глубина проплавления.

Слово о наружных дефектах

К этим наружным «сварочным вредителям» относятся следующие :

  • наплывы — стекание расплавленного металла на основной;
  • подрезы — точечные или продолговатые канавки в основном металле, идущие по краям шва;
  • не заваренные кратеры — углубление в конце шва при резком обрыве дуги;
  • прожоги — сквозное отверстие при сварке первого слоя шва;
  • поджоги — это результат «чирканья» электродом при возбуждении дуги;
  • трещины — разрыв метала по шву или прилегающему металлу;
  • поры — полость округлой формы;
  • брызги — застывшие капли на соединении;
  • свищи - дефект в виде воронки в шве.

Вот все эти дефекты и призван выявлять и фиксировать визуальный контроль.

Внешний осмотр

При проведении сварочных работ внешнему осмотру, а часто и измерению подвергаются и подготовительные действия. Проверяется качество материала - наличие или отсутствие дефектов на металле (заусенции, вмятины, чистота кромок), подготовка конструктивных элементов кромок (правильность угла разделки, зазор, соосность), качество и правильность выполнения прихваток. Конструкции, которые были собраны с нарушениями технических условий, бракуются.

Во время самого сварочного процесса сварщик (он является естественным и первым контролером качества соединения), кроме наблюдения за режимом сварки и стабильностью горения дуги, наблюдает как выполняются валики при выполнении многослойных швов. Исключительно важным является контроль за качеством начального прохода (корня шва). Потому что именно первый слой «рисует» всю последующую «картинку» сварного соединения. Очень часто даже приходится осматривать корень при помощи 4-7кратной лупы.

При визуальном контроле готовых изделий так же применяют лупу. В первую очередь выявляются все те «сварочные косяки», которые упоминались выше. Большинство из них не допустимы и подлежат исправлению. Так же большое внимание, при визуальном контроле, уделяется форме шва, правильному "рисунку" чешуек и «общей картине» распределения металла в усилении шва.

Для каждого шва, выполненного в разных "позах", характерен свой внешний вид и форма.

При осмотре особо ответственных изделий и конструкций (особенно в военной и космической промышленности), внешний вид швов часто сравнивают со специально выполненными эталонами. Геометрию контролируют при помощи шаблонов и измерительных инструментов.

Визуальный контроль достаточно информативен, является дешевым и быстрым методом контроля. А при внимательном наблюдении сварочного процесса, можно исключить появление многих дефектов. Визуальный осмотр — процедура недорогая и очень эффективная в технологическом процессе.

Условия для визуального и измерительного контроля

Для проведения качественного ВИК необходимо создание определенных условий на любой площадке. Будь-то высокотехнологичное производство, где работают в белых халатах и перчатках, сварочный цех или монтажная площадка. Они включают в себя:

  • удобство подхода специалистов;
  • возможность подключения местного освещения 12 В;
  • освещенность должна быт не менее 500 Лк (500 люкс);
  • в помещениях окраска стен, потолков и столов должна быть выполнена в светлых тонах;
  • обеспечение достаточного обзора для глаза специалиста. Поверхность рассматривается под углом более 300 к плоскости и с расстояния не менее чем 600мм;
  • зачистка поверхностей, как того требуют нормативные документы;
  • меры по безопасному проведению контроля.

Только после того как проведен тщательный визуальный контроль и исправлены все несоответствия, соединения подвергаются другим методам контроля, если того требует проектная документация.

В зависимости от химического состава сталь бывает углеродистая и легированная. Углеродистая сталь делится на низкоуглеродистую (содержайие углерода до 0,25%), среднеуглеродистую (содержание углерода от 0,25 до 0,6%) и высокоуглеродистую (содержание углерода от 0,6 до 2,0%). Сталь, в составе которой Кроме углерода имеются легирующие компоненты (хром, никель, вольфрам, ванадий и т.д.), называется легированной. Легированные стали бывают: низколегированные (суммарное содержание легирующих компонентов, кроме углерода, менее 2,5%); среднелегированные (суммарное содержание легирующих компонентов, кроме углерода, от 2,5 до 10%), высоколегированные (суммарное содержание легирующих компонентов, кроме углерода, более 10%).
По микроструктуре различают стали перлитного, мартенситного, аустенитного, ферритного и карбидного классов.
По способу производства сталь может быть:
а) обыкновенного качества (содержание углерода до 0,6%), кипящая, полуспокойная и спокойная. Кипящую сталь получают при неполном раскислении металла кремнием, она содержит до 0,05% кремния. Спокойная сталь имеет однородное плотное строение и содержит не менее 0,12% кремния. Полуспокойная сталь занимает промежуточное положение между кипящей и спокойной сталями и содержит 0,05 - 0,12% кремния; б) качественной - углеродистой или легированной, в которых содержание серы и фосфора не должно превышать по 0,04% каждого элемента;
в) высококачественной - углеродистой или легированной, в которых содержание серы и фосфора не должно превышать соответственно 0,030 и 0,035% - Такая сталь также имеет повышенную чистоту по неметаллическим включениям и обозначается буквой А, помещаемой после обозначения марки.
По назначению стали бывают строительные, машиностроительные (конструкционные), инструментальные и стали с особыми физическими свойствами.
Сварка низкоуглеродистых сталей. Такие стали имеют хорошую свариваемость. При выборе типа и марки электрода для сварки низкоуглеродистых сталей руководствуются следующими требованиями:
обеспечение равнопрочности сварного соединения с основным металлом;
получение сварных швов без дефектов;
обеспечение требуемого химического состава металла шва;
получение стойкости сварных соединений в условиях вибрационных и ударных нагрузок, а также при повышенных или пониженных температурах.
Для сварки низкоуглеродистых сталей применяют электроды марок ОММ-5, СМ-5, ЦМ-7, КПЭ-32Р, ОМА-2, УОНИ-13/45, СМ-11 и др. (табл. 10).

Таблица 10

Технологические характеристики электродов для сварки низкоуглеродистых сталей


Сварка среднеуглеродистых сталей. Такие стали имеют повышенное содержание углерода, который является причиной образования кристаллизационных трещин при сварке, а также малопластичных закалочных структур и трещин в околошовной зоне. Поэтому для повышения стойкости металла шва против образования кристаллизационных трещин следует понизить количество углерода в металле шва. Это достигается применением электродов с пониженным содержанием углерода, а также уменьшением доли участия основного металла в металле шва.
Чтобы снизить вероятность появления закалочных структур, необходимо применять предварительный и сопутствующий подогрев изделия. Надежным способом достижения равнопрочности сварного соединения при низком процентном содержании углерода является дополнительное легирование металла шва марганцем и кремнием.
Среднеуглеродистые стали свариваются электродами УОНИ-13/45, УП-1/45, УП-2/45, ОЗС-2, УОНИ-13/55, К-5А, УОНИ-13/65 и др. (табл. 11).

Сталь считается прочным материалом, который используется в разных сферах. Из него изготавливают важные конструкции - ограждения, элементы для обшивки зданий, различное оборудование, трубы и другие изделия. Прочность основы обеспечивает содержание в ее составе различных добавок.

Составляющие компоненты оказывают влияние не только на прочность металла, но и на способность к свариванию. Сварка стали может зависеть от разных показателей - от свойств, прочности, дополнительных компонентов. Именно поэтому некоторые виды металла свариваются быстро и легко, а другие наоборот требуют особого подхода.

Влияние легированных примесей на сваривание стали

Сталь для сварочных конструкций может применять различная, но стоит учитывать, что ее свариваемость зависит в первую очередь от наличия в ее составе легированных примесей. Именно химический состав оказывает основное влияние на данный процесс.

Ниже в таблице приведены основные легирующие примеси, которые влияют на степень свариваемости различных видов стали.

Легирующая примесь Описание
Углерод (С) Эта самая важная примесь, от которой зависит прочность, эластичность, закаливаемость и другие важные качества металла. Если в состав входит 0,25 % углерода, то это не будет снижать показатели свариваемости. Если же его содержание будет выше данного показателя, то это вызовет появление закалочных структур в металле зоны термического влияния и к появлению трещин.
Сера (S) и фосфор (Р) Данные компоненты относятся к вредным добавкам. При высоком уровне в составе стали серы происходит появление красных трещин - красноломкость, а при наличии высокого уровня фосфора - хладноломкость. Поэтому низкоуглеродистые стали содержат S и P до 0,4-0,5 %.
Кремний (Si) Это раскислитель. Его уровень должен быть около 0,3 %, данный показатель не снижает свойства свертываемости. Если кремний будет составлять 0,8-1 %, то могут образоваться тугоплавкие оксиды, которые окажут негативное влияние на свариваемость металла.
Марганец (Mn) При содержании данного элемента до 1 % сваривание не ухудшается. Если уровень марганца будет составлять от 1,8 до 2,5 %, то могут образовываться закалочные структуры и трещины в металле.
Хром (Cr) В составе низкоуглеродистых сталей хром содержится в качестве примеси до 0,3 %. В составе низкоуглеродистых сталей - 0,7-3,5 %. В легированных сталях - 12-18 %. А в высоколегированных - 35 %. Во время сварки хром вызывает образование карбидов, которые ухудшают степень стойкости металла к воздействию коррозии. Также данное вещество вызывает образование тугоплавких оксидов, которые ухудшают процесс сварки.
Никель Компонент имеется в составе в качестве примеси. Его нормальное содержание должно быть 0,3 %. В составе низколегированных сталях возможно повышение до 5 %, а в высоколегированных - до 35 %. Никель повышает уровень прочности и пластичности металла.
Ванадий (V) В составе легированных сталей уровень компонента достигает 0,2-0,8 %. Он вызывает увеличение вязкости и пластичности стали, улучшает ее структуру, повышает степень ее прокаливаемости.
Молибден (Mo) В сталях его содержание не должно превышать 0,8 %. Если уровень компонента в норме, то он будет положительно влиять на прочностные характеристики металла. Но при сварке происходит выгорание этого компонента, что приводит к появлению трещин в наплавленном металле.
Титан и ниобии (Ti и Nb) В составе сталей устойчивых к коррозийному поражению, а также в металлах с высокой жаропрочностью содержание данных элементов может составлять 1 %. Они повышают стойкость к коррозийному поражению, но при этом ниобий в сталях с типом 18-8 вызывает образование трещин.
Медь (Сu) В сталях ее уровень составляет 0,3 %, в низколегированных - от 0,15 до 0,5 %, а в высоколегированных - от 0,8 до 1 %. Повышает устойчивость к коррозийному поражению, но при этом не ухудшает свариваемость.

Факторы, определяющие свертываемость стали

Сварка углеродистых сталей зависит от содержания примесей, и от других свойств. Обычно оценивание сваривания проводится по показателям содержания основного вещества - углеродного эквивалента Сэкв. Это условный коэффициент, который позволят учитывать степень воздействия содержания карбона и главные легирующие компоненты на характеристики шва.


Степень сваривания стали для изготовления сварных конструкций может зависеть от следующих факторов:

  • показатель содержания углерода;
  • присутствие вредных примесей;
  • степень легирования;
  • вид микроструктуры;
  • условия внешней среды;
  • уровень толщины металлической основы.

Классификация сталей по свариваемости

Сварка стали 45, 40, 20 и других марок в зависимости от важных качеств металлической основы может иметь различные характеристики.


В зависимости от степени свариваемости сталь разделяют на несколько групп:

  • хорошая свариваемость, при этом показатель углеродного эквивалента Сэкв. должен быть не меньше 0,25 %, допускается больше. Она не зависит от погодных условий, от размера толщины изделий, наличия подготовительных работ;
  • удовлетворительный показатель свариваемости - показатель Сэкв должен быть больше 0,25 %, но не выше 0,35 %. При этом имеются ограничительные нормы к условиям окружающей среды и к размерам диаметра свариваемого изделия. Сварка стали 20 должна проводиться при температуре воздуха до -5 в безветренную погоду, а размер диаметра не должен превышать 20 мм;
  • ограниченная. Показатель Сэкв. должен составлять от 0,35 % до,45 %, но главное не больше. Чтобы получить шов высокого качество требуется проводить предварительный нагрев. За счет этого получается добиться плавные аустенитные преобразования, а также формирование устойчивых структур;
  • плохая свариваемость, при которой показатель Сэкв. составляет больше 0,45 %. Для того чтобы получить качественное и механические устойчивое сварное соединение требуется предварительная температурная подготовка кромок металлической основы. Также после сваривания конструкцию следует термически обрабатывать. Для получения требуемой микроструктуры во время сварки стали 40 должны выполняться дополнительные подогревы и охлаждения.

Особенности сварки низкоуглеродистых сталей

Металлы низкоуглеродистого типа имеют в своем составе 0,25 % углерода. Этот показатель обеспечивает положительные особенности основы:

  • хорошая упругость;
  • высокие свойства пластичности;
  • значительная ударная вязкость;
  • основа идеально подходит для сваривания.

Применяют низкоуглеродистую сталь для сварных конструкций. Также используют при изготовлении изделий методом холодного штампования.

Как сваривается низкоуглеродистая сталь

Технология сварки низкоуглеродистых сталей проводится с помощью ручного дугового сваривания с использованием электродов с обмазыванием. Обязательно запомните несколько нюансов:

  • в первую очередь требуется выбрать марку электродов. За счет этого обеспечивается равномерная структура наплавленного металла;
  • сваривание должно выполняться в быстром и точном режиме;
  • перед тем как начинать рабочий процесс требуется заранее подготовить детали, которые нужно будет соединять.

Технология сварки углеродистых сталей может производиться газовым свариванием. К важным особенностям относят:

  • при этом процесс проводится без использования дополнительных флюсов;
  • для присадочной основы стоит использовать металлическую проволоку с низким уровнем углерода;
  • при правильном выполнении сваривании предотвращается образование пор;
  • изделия важного значения нужно сваривать аргоном.

Как сваривание будет выполнено, готовое изделие обязательно подвергают термической обработке при помощи метода нормализации. Во время данного процесса изделие нагревается до 4000С, затем охлаждается и выдерживается на открытом воздухе. Данная процедура делает структуру изделия равномерной.

Главные особенности

Сварка стали 30 с низкоуглеродистой основой обладает несколькими важными особенностями, на которые стоит обратить внимание:

  • качественное сваривание конструкций из данного материала обеспечивает равнопрочность сварного соединения с основным металлом. Также оно защищает от образования дефектов;
  • металлическая основа соединения имеет в составе низкое содержание углерода, но при этом показатели таких компонентов, как кремний и марганец повышены;
  • во время ручной дуговой сварке околошовная зона может подвергаться перегреванию. Это способствует небольшому упрочнению шва;
  • шов, который выполняется при помощи многослойной сварки, имеет повышенную хрупкость;
  • в связи с тем, что в швах имеется низкий уровень углерода, они обладают повышенной стойкостью к воздействию межкристаллическому коррозийному поражению.

Разновидности сварки для низкоуглеродистой стали

Сварка низкоуглеродистых сталей может производиться при помощи нескольких методов. При этом каждый из них имеет важные особенности, которые обязательно нужно учитывать во время сваривания.

Вид Характеристика
Ручное дуговое сваривание электродами с покрытием Чтобы точно выбрать расходный материал для сваривания этим методом, требуется учитывать несколько важных условий - готовый сварной шов должен быть без повреждений, равномерная прочность соединения, оптимальный химический состав металлической основы шва, стойкость соединения при ударах. Сварка стали 45 и других марок выполняется электродом. При этом могут использоваться различные марки электродов.
Газовая Процесс производится в защитной аргоновой среде. Дополнительно в качестве присадочной основы используется проволока из металлической основы.
Электрошлаковая Во время нее применяются флюсы. Электроды из проволочной и пластинчатой основы выбираются в зависимости от главного сплава.
Автоматическое и полуавтоматическое сваривание Процесс сваривания производится в защитной среде. Во время него может применяться аргон или гелий в чистом виде, но в основном углекислый газ.
Автоматическая под флюсом Сваривание выполняется с использованием электродной проволоки в диаметре от 3 до 5 мм. Сварка 45 стали (20, 30, 40 и других марок) полуавтоматом - 1,2-2 мм. Сваривание происходит за счет электрического тока с обратной полярностью.
Сваривание с применением порошковых проволок Оно считается самым подходящим. Сила тока обычно находиться в пределах от 200 до 600 А.

Сварка среднеуглеродистой стали

Металлы со средним содержанием углерода обычно применяют при производстве изделий с высокими механическими качествами. Сплавы подходят для ковки. Также их часто используют для конструкций, которые производятся при помощи холодного пластического деформирования.


Стали, которые содержат в составе углерод от 0,4 до 0,6 %, часто применяются в машиностроительной сфере. Из них можно делать колеса и оси вагонов, рельсы железных дорог.

Как выполняется

Технология сварки среднеуглеродистых сталей протекает не так просто. Все дело в некоторых сложностях:

  • у главного и наплавляемого металла отсутствует равная прочность;
  • имеется повышенный риск появления больших трещин и непластичных структур рядом с соединением;
  • низкая устойчивость к образованию коррозии.
  • сварка 30хгса стали должна проводиться электродами и проволокой с низким уровнем углерода;
  • сварочные стержни должны иметь повышенный показатель коэффициента наплавления;
  • чтобы обеспечить небольшую степень проплавления главного металла рекомендуется делать разделение кромок, установку подходящего режима сваривания, а также применять проволоку присадочного типа;
  • сварка стали 35хгса обязательно должна быть с предварительным прогреванием заготовок. Также они должны прогреваться и в процессе сваривания для обеспечения равномерной прочности сварных швов.

Виды сварки среднеуглеродистой стали

Сварка стальных труб из металла со средним содержанием углерода и других изделий является сложной процедурой. Сваривание данного материала может производиться несколькими способами. При этом каждый из них отличается как процессом работы, так и готовым результатом.

Сталь под маркой 35 хгса имеет среднее содержание углерода, ее сварка обычно производиться ручным дуговым свариванием с электродами. Но при этом они должны иметь в своем составе небольшой уровень углерода, наиболее подходящими считаются расходники следующих марок - УОНИ-13/55, УОНИ-13/65, ОЗС-2, К-5а.

Технология газовой сварки среднеуглеродистых сталей имеющих тонколистный формат производится левым способом с применением проволоки. Также обязательно применяется нормальное сварочное пламя, которое позволяет снизить расход газа в среднем до 75-100 дм3 в 1 час. В среднем показатель расхода ацетилена составляет 120-150 л/ч на 1 мм толщины свариваемого сплава.

Изделия с толстыми стенками с размером толщины от 3 мм и больше нужно сваривать правым способом газовой сварки. Этот вариант имеет высокую производительность. При этом расчет ацетилена такой же, как и при левом способе сварки - 120-150 л/ч. Общий подогрев должен доходить до 250-300 градусов, а местный до 600-650 градусов.


Сварка стали 35, 20, 40, 45 и других марок под флюсом сопровождается использованием проволоки для сварочных работ и плавленых флюсов. При сваривании оказывается небольшое воздействие тока. Это повышает содержание в наплавляемой металлической основе кремния и марганца.

Сварка высокоуглеродистой стали

Из высокоуглеродистого металла не производятся сварные изделия. Дело в том, что данный материал обладает низким уровнем пластичности, именно это свойство ограничивает использование металла.

Высокоуглеродистую сталь применяют в следующих целях:

  • во время проведения ремонтов и строительства;
  • для изготовления пружин;
  • для производства инструментов и изделий, которые используются для резки, бурения, деревообработки;
  • из металла производится проволока с высокой прочностью;
  • конструкции, которые имеют высокую износостойкость и прочность.

Как выполняется

Сварка высокоуглеродистых сталей выполняется обычно с использованием предварительного и сопутствующего прогрева наплавляемого металла до 150-4000С. Также после сваривания дополнительно для улучшения прочности проводится термообработка.

Это нужно потому, что сплавы из материала имеют высокую хрупкость, повышенную чувствительность к трещинам с горячей и холодной структурой, а также из-за химической неоднородности сварного соединения.

Технология сварки высокоуглеродистых сталей выполняется с учетом следующих рекомендаций:

  • после прогрева выполняется отжиг. Он выполняется, пока конструкция не остынет до 2000С;
  • сварка 40х, 20х, 30х не должна выполняться на сквозняках, а также при показателе температуры ниже -50С;
  • чтобы повысить свойства прочности шва нужно производить плавный переход от одного к другому свариваемому металлу;
  • чтобы получить качественное соединение стоит при сваривании использовать узкие валики. При этом должно выполняться охлаждение каждого наплавляемого слоя;
  • обязательно должны выполняться правила, которые относятся к соединениям из среднеуглеродистой основы.

Виды сварки

Процесс сварки высокоуглеродистых сталей может выполняться несколькими способами, которые могут отличаться некоторыми особенностями:

  • ручная дуговая сварка с использованием покрытых электродов. Рабочий процесс высокоуглеродистыми сталями имеет множество специфических характеристик. По этой причине сварка стали 40х, 30х, 45х и других марок должна проводиться с использованием специальных электродов, к примеру, НР-70. А сваривание швов производится током с обратной полярностью;
  • для соединения металла данного вида может применяться сварка под флюсом. В связи с тем, что в ручном режиме равномерно покрыть флюсом рабочую область очень тяжело, поэтому сварка проводится с использованием автоматической технологии. При расплавлении флюс переходит в состояние плотной оболочки, которая защищает сварочную ванну от воздействия вредных атмосферных факторов. Сварка стали 30хгса с использованием флюса производится при помощи трансформаторов.

Разновидности нержавеющей стали

Сварка разнородных сталей нержавеющей и обычной зависит не только от свойств материала, но и от его вида. По этой причине чтобы выбрать подходящий способ сваривания стоит сначала определить видовую принадлежность стали.


По главным свойствам нержавеющая сталь классифицируется на следующие виды:

  • аустенитная;
  • мартенситная;
  • ферритная.

В составе аустенитных имеется высокое содержание никеля и хрома. Применяются нержавеющие стали для изготовления сварных конструкций, для производства посуды, архитектурных компонентов, дымоходов, столовых принадлежностей. Сталь этого вида обладает высокой пластичностью, химической стойкостью и устойчивостью к механическим повреждениям.

В мартенситные стали входит низкий уровень углерода и хрома до 12 %. Металлы данной разновидности обладают высокой хрупкостью, но очень твердые. Из них производят режущие приспособления, бытовые изделия, турбины, крепежные элементы, которые используются в среде со слабым уровнем агрессивности.

В состав ферритных сталей входит средний уровень хрома. Они не закаляются и имеют повышенную устойчивость к агрессивным средам. Их в основном используют в машиностроительной сфере для производства втулок, валов, штуцеров.

Виды сварки нержавеющей стали

Сварка мартенситно, ферритных и аустенитных сталей выполняется практически всеми известными и распространенными способами сваривания. К наиболее популярным методам относят:

  • ручная дуговая MMA;
  • вольфрамовым электродом в атмосфере аргона TIG;
  • при помощи полуавтоматических технологий сваривания в инертной атмосфере - MIG/MAG, лазером.

Сварка аустенитных сталей и других разновидностей нержавеющего металла обычно выполняется осторожно, во время нее следует учитывать сложный химический состав и физические свойства металла. К главным качествам, которые затрудняют процесс сварки, относятся:

  • при сваривании нержавеющих сталей температура должна быть ниже, в отличие от сварки углеродистых металлов;
  • сварка разнородных сталей сопровождается высоким тепловым расширением;
  • низкий уровень теплопроводности.

Сварка жаропрочных сталей

Сварка жаропрочных сталей обычно выполняется при помощи дугового сваривания с использованием вольфрамового электрода. Весь процесс обычно проходит в среде защитных газов - аргона или гелия.


Сварка стали 15х5м и больших размеров может протекать при помощи аргонодугового сваривания с применением неплавящихся или плавящихся электродов или при помощи автоматической сварки под флюсом.

Аргоновая сварка стали 20х, 30х, 40х по сравнению со свариванием в гелиевой защитной среде сопровождается меньшим расходом газа, небольшим напряжением дуги и высоким сварочным током. По этой причине она является наиболее востребованной.

Сварка жаропрочной стали 40х, 20х, 30х, технология которой требует соединение металла в состоянии после закаливания, имеет несколько особенностей. Во время процесса сваривания металл прогревается до 1050-1100 градусов и после этого резко охлаждается.

Сварка стальных трубопроводов из любого вида металла (низкоуглеродистого, среднеуглеродистого, нержавеющего, жаропрочного) может выполняться разными способами. Самыми популярными являются ручное дуговое, автоматическое, газовое сваривание. Но в любом случае, прежде чем будет проведена сварка стали 30хгса и других марок, технология должна быть полностью изучена.

Углеродистая сталь представляет собой сплав железа и углерода с незначительным содержанием кремния, марганца, фосфора и серы. В углеродистой стали, в отличие от нержавеющей, отсутствуют легирующие элементы (молибден, хром, марганец, никель, вольфрам) Свойства углеродистой стали сильно изменяются в зависимости от незначительного изменения содержания углерода. С ростом содержания углерода растут твердость и прочность стали, а ударная вязкость и пластичность снижаются. При содержании углерода более 2,14% сплав называется чугуном.

Классификация углеродистых сталей

  • низкоуглеродистую (с содержанием углерода до 0,25%)
  • среднеуглеродистую (с содержанием углерода 0,25 - 0,6%)
  • высокоуглеродистую (с содержанием углерода 0,6 - 2,0%)

По способу производства различают сталь:

1. Обыкновенного качества (углерода до 0,6%) кипящую, полуспокойную, спокойную

Существует 3 группы сталей обыкновенного качества:

  • Группа А. Поставляется по механическим свойствам без регламентации состава сталей. Стали эти обычно используются в изделиях без последующей обработки давлением и сваркой. Чем больше число условного номера, тем выше прочность и меньше пластичность стали.
  • Группа Б. Поставляется с гарантией химического состава. Чем больше число условного номера, тем выше содержание углерода. В дальнейшем могут обрабатываться ковкой, штамповкой, температурным воздействием без сохранения начальной структуры и механических свойств.
  • Группа В. Могут свариваться. Поставляются с гарантией состава и свойств. Эта группа сталей имеет механические свойства в соответствии с номерами по группе А, а химический состав – с номерами по группе Б с коррекцией по способу раскисления.

2. Высококачественную с содержанием серы до 0,030 % и фосфора до 0,035%. Сталь имеет повышенную чистоту и обозначается буквой А после марки стали

По назначению стали могут быть:

  • строительные
  • машинострои­тельные (конструкционные)
  • инструментальные
  • стали с осо­быми физическими свойствами

Сварка низкоуглеродистых сталей

Такие стали хорошо свариваются. Чтобы правильно выбрать электроды нужного типа и марки, необходимо учитывать следующие требования:

  • Равнопрочное сварочное соединение с основным металлом
  • Бездефектный сварной шов
  • Оптимальный химический состав шовного металла
  • Устойчивость сварных соединений при вибрационных и ударных нагрузках, повышенных и пониженных температурах

Для сварка низкоуглеродистых сталей используются электроды марок ОММ-5,СМ – 5, ЦМ – 7, КПЗ-32Р, ОМА – 2, УОНИ – 13/45, СМ – 11

Сварка углеродистых сталей

Углерод увеличивает возможность закалки стали. Сталь с содержанием углерода (0,25–0,55%) подвержена закалке и отпуску, что значительно увеличивает ее твердость и износостойкость. Эти качества стали используются в производстве деталей механизмов, осевых валов, зубчатых колес, корпусов, звездочек и других деталей, требующих повышенной износостойкости. Зачастую сварка становится единственной технологией изготовления и ремонта деталей машин, станин производственного оборудования и т.д.

Проблемы сварки углеродистых сталей и методы их решения

Однако, сварка углеродистых сталей затруднена по следующей причине: углерод, содержащийся в таких сталях, способствует образованию при сварке кристаллизационных горячих трещин и малопластичных закалочных образований и трещин в околошовных зонах. Металл самого шва отличается по свойствам от основного металла, а углерод снижает устойчивость швов к образованию трещин, усиливая отрицательное влияние серы и фосфора.

Критическое содержание углерода в шве зависит от:

  • конструкции узла
  • формы шва
  • содержания в шве различных элементов
  • предварительного подогрева участка шва

Соответственно, методы повышения устойчивости от образования горячих трещин направлены на:

  • Ограничение элементов, способствующих образованию трещин
  • Снижение растягивающих напряжений в шве
  • Формирование оптимальной формы шва максимально однородного химического состава

Кроме того, повышенное содержание углерода способствует формированию малопластичных структур, которые под действием различных напряжений склонны к образованию холодных трещин и разрушению. Для предотвращения этого используются способы, исключающие факторы, способствующие возникновению таких условий.

Требования к технологии сварки углеродистых сталей

При выполнении сварных соединений сталей с повышенным содержанием углерода для стойкости швов к образованию трещин следует соблюдать следующие условия:

  • Применять сварочные электроды и проволоку с низким содержанием углерода
  • Использовать режимы сварки и технологические меры, ограничивающие дрейф углерода из основного металла в сварочный шов (разделку кромок, увеличенный вылет, использование присадочной проволоки и пр.)
  • Вводить элементы, способствующие образованию в шве тугоплавких или округлых сульфидных образований (марганца, кальция и т.д.)
  • Использовать определенный порядок наложения швов, снижать жесткость узлов. Использовать другие режимы и методы, обеспечивающие снижение напряжений в сварочном шве
  • Выбирать нужные формы шва и снижать его химическую неоднородность
  • Минимизировать содержание диффузионного водорода (применять низко-водородные электроды, сушку защитных газов, очистку кромок и проволоки, прокаливать электроды, проволоку, флюсы)
  • Обеспечивать медленное охлаждение сварочного шва (использовать многослойную, двухдуговую или многодуговую сварку, наплавку отжигающего валика, использовать экзотермические смеси и др.)

Технологические особенности сварки углеродистых сталей

Некоторые особенности подготовки и сварки деталей из углеродистых сталей:

  • Очистка материала

При сварке углеродистой стали основной металл очищается от ржавчины, грязи, слоя окалины, масла и прочих загрязнений, которые являются источниками водорода и способны образовывать поры и трещины в шве. Очищаются кромки с прилегающими участками металла шириной до 10 мм. Таким образом обеспечивается плавный переход к основному металлу конструкции и прочность шва при различных нагрузках.

  • Сборка деталей под сварку. Разделка кромок

При сборке деталей под сварку обязательно соблюдается зазор, зависящий от толщины деталей. Ширина зазора на 1-2 мм больше, чем при сборке элементов хорошо свариваемых сталей. Разделку кромок следует проводить при толщине металла от 4 мм, что способствует уменьшению перехода углерода в шов. Поскольку высока склонность к закалке, от прихваток малого сечения следует отказаться или использовать перед прихватками предварительный локальный подогрев.

  • Сварочный режим должен обеспечивать наименьшую проплавку основного металла и оптимальную быстроту охлаждения. Правильность выбора режима сварки может быть подтверждена результатами замера твердости металла шва. При оптимальном режиме она не должна превышать 350 HV.
  • Ответственные узлы свариваются в два и более прохода. Сварной шов к основному металлу должен иметь плавный подход. Частые разрывы дуги, вывод кратера на основной металл и его ожоги не допускаются.
  • Ответственные конструкции из углеродистых сталей, а также узлов с жестким контуром и др. свариваются с предварительным подогревом. Подогрев осуществляется в температурном диапазоне 100–400 °С, причем температура подогрева тем выше, чем больше содержание углерода и толщина свариваемых деталей.
  • Охлаждение сварных соединений после окончания сварки углеродистой стали должно быть медленным. Сварной узел для этого накрывается специальным теплоизоляционным материалом, перемещается в специальный термостат или используется после сварочный нагрев.

Сварочные материалы для сварки углеродистых сталей

  • Для сварки сталей с содержанием углерода до 0,4% можно использовать сварочные электроды, пригодные для сваркинизколегированных сталей с небольшими ограничениями. Для ручной сварки применяют электроды с покрытием основного типа, которые обеспечивают минимальное содержание водорода в шовном наплаве. Используются электроды марок УОНИ–13/45, УОНИ–13/55 и др.
  • Механизированная сварка углеродистой стали в защитном газе предполагает использование проволоки марок Св–08Г2С, Св–09Г2СЦ или аналогичных, а также газовой смеси углекислоты и кислорода (при содержании последнего до 30%) или углекислого газа. Допускается использовать окислительные аргоновые газовые смеси (70-75% Ar+20-25% СО2+5% О2). Наиболее оптимальная толщина проволоки 1,2 мм.
  • Если углеродистая сталь прошла термическую обработку или легирована, то электродная проволока Св–08Г2С не обеспечит необходимые механические свойства. В этих случаях для сварки применяются проволоки комплексно-легированные марок Св–08ГСМТ, Св–08ХГСМА, Св–08Х3Г2СМ и др.
  • Автоматическая сварка углеродистой стали под флюсом производится проволоками Св–08А, Св–08АА, Св–08ГА при совместном использовании с флюсами АН–348А, ОСЦ–45. Рекомендуется применение флюсов АН–43 и АН–47, которые обладают хорошими технологическими качествами и устойчивостью к образованию трещин.
  • Материалы для , электроды) должны соответствовать требованиям стандартов и технических условий. Не допускается использовать электроды со значительными дефектами покрытия. Проволока должна быть без грязи и ржавчины, флюсы и электроды перед использованием прокаливаются при температурах, которые рекомендованы сопроводительной технической документацией. Для сварки следует углекислый газ. Пищевой углекислый газ можно применять только после дополнительной осушки.