Реферат Подъёмная сила крыла самолёта. Подъемная сила крыла самолета Подъемная сила крыла

Скалистовская общеобразовательная школа I –III ступени

Элективный курс физики в 10 классе Исследовательский проект на тему

«Изучение зависимости аэродинамических качеств крыла от его формы».

г. Бахчисарай.

Научный руководитель:

учитель физики Джемилев Ремзи Недимович

Работу выполнил: Ерофеев Сергей

ученик 10 класса

(Скалистовская общеобразовательная

школа I - III ступеней

Бахчисарайского районного совета

Автономной Республики Крым)

Актуализация темы.

Одна из основных проблем при конструировании новых самолётов - выбор оптимальной формы крыла и его параметров (геометрических, аэродинамических, прочностных и т. п.). Авиаконструкторам пришлось столкнуться с разными неожиданными эффектами, возникающими при больших скоростях. Отсюда и необычные порой формы крыльев современных самолетов. Крылья « отгибаются» назад, придавая им вид стрелы; или наоборот крылья приобретают форму обратной стреловидности.

Объектом нашего исследования является раздел физики аэродинамика – это раздел аэромеханики, в котором изучаются законы движения воздуха и других газов и их силовое взаимодействие с движущимися твердыми телами.

Предметом исследования является определение величины подъемной силы крыла при определенной

скорости движения воздушного потока относительно крыла. Одна из основных причин влияющих на форму крыла является совершенно иное поведение воздуха при больших скоростях.

Аэродинамика – наука экспериментальная. Формул, позволяющих абсолютно точно описать процесс взаимодействия твердого тела с набегающим потоком воздуха, пока нет. Однако было замечено, что тела, имеющие одинаковую форму (при разных линейных размерах), взаимодействуют с воздушным потоком одинаково. Поэтому на уроке мы будем проводить исследования аэродинамических параметров трех видов крыла с одинаковым поперечным сечением, но разной формы: прямоугольной, стреловидной и обратной стреловидностью при обтекании их воздухом.

Наблюдения и опыты которые мы проведем помогут нам лучше понять некоторые новые стороны физических явлений, которые наблюдаются при полете самолета.

Актуальность нашей темы заключается в популяризации авиации, авиационной техники.

История исследования.

Ощущаем ли мы воздух вокруг себя? Если мы не шевелимся, то практически его не чувствуем. Когда же, к примеру мы мчимся в автомобиле с открытыми окнами, то бьющий в лицо ветер напоминает пружинящую струю жидкости. Значит воздух обладает упругостью и плотностью и может создавать давление. Нашему далекому предку ничего не было известно об опытах, доказывающих существование атмосферного давления, но он интуитивно понимал, что если очень сильно помахать руками то, глядишь удастся оттолкнуться от воздуха, как птице. Мечта о полете сопровождала человека, сколько он себя помнит. Об этом говорит известнейшая легенда об Икаре. Многие изобретатели пытались взлететь. В разных странах и в разные времена были многочисленные попытки покорения воздушной стихии. Великий итальянский художник Леонардо да Винчи набросал проект летательного аппарата, работающего только на мускульной силе человека. Однако природа не позволила человеку летать подобно птице. Но она наградила его разумом, который помог изобрести аппарат тяжелее воздуха, способный оторваться от земли и поднимать не только себя, но и человека с грузами.

Как же удалось ему создать такую машину? Что держит самолет в воздухе? Ответ очевиден – крылья. А что держит крылья? Самолет устремляется вперед, разгоняется, возникает подъемная сила. При достаточной скорости она оторвет наш летательный аппарат от земли и будет удерживать самолет во время полета.

Первые теоретические исследования и важные результаты были проведены на рубеже XIX-XX веков русскими учёными Н. Е. Жуковским и С. А. Чаплыгиным.

Николай Егорович Жуковский (1847 -1921) - русский ученый, основоположник современной аэродинамики. Построил в начале века аэродинамическую трубу, разработал теорию крыла самолета. В 1890 г. Жуковским бала опубликована его первая работа в области авиации « К теории летания».

Сергей Алексеевич Чаплыгин (1869 - 1942) советский ученный в области теоретической механики, один из основоположников современной гидроаэродинамики. В своей работе «О газовых струях», дал теорию полетов с высокими скоростями, послужившую теоретической основой современной высокоскоростной авиации.

«Человек не имеет крыльев и по отношению веса своего тела к весу мускулов он в 72 раза слабее птицы…. Но я думаю, что он полетит, опираясь не на силу своих мускулов, а на силу своего разума.»

Н.Е. Жуковский

Основы аэродинамики. Основные понятия.

Аэродинамическая труба - установка, создающая поток воздуха для экспериментального изучения обтекания тел потоками воздуха.

Опыты в аэродинамической трубе проводят на основе принципа обратимости движения – движение тела в воздухе можно заменить

движением газа относительно неподвижного тела.

Крыло самолета - важнейшая часть самолета, источник подъемной силы, делающей возможным полет самолета. У разных самолетов неодинаковые крылья, которые отличаются размерами, формой, положением относительно фюзеляжа.

Размах крыла - это расстояние между концами крыла по прямой линии.

Площадь крыла S – это площадь ограниченная контурами крыла. Площадь стреловидного крыла вычисляют как площади двух трапеций.

S = 2 · · = bср· ɭ [ м2 ] (1)

Полная аэродинамическая сила – это сила R, с которой набегающий

воздушный поток воздействует на твердое тело. Разложив эту силу на вертикальную Fy и горизонтальную Fx компоненты (рис.1), мы получим подъемную силу крыла и силу его лобового сопротивления соответственно.

Описание эксперимента.

Для повышения наглядности демонстраций и количественного анализа проводимых экспериментов мы будем использовать измерительный прибор - определения численного значения подъемной силы крыла. Измерительный прибор состоит из металлической рамы на которой укреплена стрелка с неравноплечевым рычагом. Направляя воздушный поток на модель крыла происходит нарушении равновесия рычага стрелка двигается по шкале указывая на величину угла отклонения крыла от горизонтали.

Модели крыла изготовлены из пенопласта размером 140 ͯ 50 мм. Крылья современных самолетов по форме могут быть прямоугольные, стреловидные, обратной стреловидности

Модель для измерения величины подъемной силы крыла включает в себя следующие основные блоки (рис.4.) :

Аэродинамическую трубу;

Измерительный прибор;

Неподвижную платформу на которой закреплены вышеперечисленные устройства.

Проведение эксперимента.

Модель работает следующим образом:

Для опыта модель крыла крепят к рычагу и устанавливают на расстоянии 20-25 см от аэродинамической трубы. Направляют воздушный поток на модель крыла и наблюдают, как оно поднимается вверх. Меняем форму крыла. Снова приводим рычаг в равновесие, чтобы модель заняла исходное положение, и определяют величину подъемной силы, при той же скорости воздушного потока.

Если установить пластину вдоль потока (угол атаки нуль), то обтекание будет симметричным. В этом случае поток воздуха пластиной не отклоняется и подъемная сила Y равна нулю. Сопротивление X минимально, но не нуль. Оно будет создаваться силами трения молекул воздуха о поверхность пластины. Полная аэродинамическая сила R минимальна и совпадает с силой сопротивления X.

По мере постепенного увеличения угла атаки и увеличения скоса потока подъемная сила увеличивается. Очевидно, что сопротивление тоже растет. Здесь необходимо отметить, что на малых углах атаки подъемная сила растет значительно быстрее, чем лобовое сопротивление.

Прямоугольное крыло.

  • Масса крыла m ≈ 0,01 кг;
  • угол отклонения крыла α = 130, g ≈ 9,8 Н/кг.
  • Площадь крыла S = 0,1· 0,027 = 0,0027 м2

    Подъемная сила крыла Rу = = 0,438 Н

    Лобовое сопротивление Rх = = 0,101 Н

    К = Fу/Fх =0,438/0,101 = 4,34

    Чем больше аэродинамическое качество крыла, тем оно совершеннее.

  • По мере увеличения угла атаки воздушному потоку становится все труднее обтекать пластину. Подъемная сила хотя и продолжает увеличиваться, но медленнее, чем раньше. А вот сопротивление растет все быстрее и быстрее, постепенно обгоняя рост подъемной силы. В результате полная аэродинамическая сила R начинает отклоняется назад. Картина резко меняется.
  • Воздушные струйки оказываются не в состоянии плавно обтекать верхнюю поверхность пластины. За пластиной образуется мощный вихрь. Подъемная сила резко падает, а сопротивление увеличивается. Это явление в аэродинамике называют СРЫВ ПОТОКА. «Сорванное» крыло перестает быть крылом. Оно перестает лететь и начинает падать.

    В нашем опыте уже при угле отклонения крыла α = 600 и более происходит срыв крыла оно не летит, g ≈9,8 Н/кг

    Подъемная сила крыла Ry = = 0,113 Н

    Лобовое сопротивление Rх = = 0,196 Н

    Аэродинамическое качество крыла К = 0,113/0,196 = 0,58

Стреловидное крыло.

Масса крыла m ≈ 0,01 кг;

угол отклонения крыла α = 200, g ≈ 9,8 Н/кг

Площадь крыла S = 0,028 м2

Подъемная сила крыла Rу = = 0,287 Н

Лобовое сопротивление R х = = 0,104 Н

Аэродинамическое качество крыла

К = Fу/Fх = 0,287/0,104 = 2,76

Крыло с обратной стреловидностью.

Масса крыла m ≈ 0,01 кг;

угол отклонения крыла α = 150, g ≈ 9,8 Н/кг

Площадь крыла S = 0,00265 м2

Подъемная сила крыла Rу = = 0,380 Н

Лобовое сопротивление Rх = =0,102 Н

Аэродинамическое качество крыла

К = Fу/Fх = 0,171/0,119 = 3,73

Анализ эксперимента

При анализе эксперимента и полученных результатов мы отталкивались от тезиса что, чем больше аэродинамическое качество крыла, тем оно лучше.

В первом случае нашего эксперимента наилучшими крыльями оказались крыло прямоугольной формы и крыло обратной стреловидности. Основным достоинством прямого крыла является его высокий коэффициент подъемной силы К = 4,34. Для стреловидного крыла коэффициент подъемной силы равен К = 2,76 и соответственно крыло обратной стреловидности имеет коэффициент подъемной силы равен К = 3,73. Поэтому у нас получилось, что наилучшим крылом оказалось крыло прямоугольной формы и крыло обратной стреловидности.

Повторили свой опыт при большей силы воздушного потока: при этом аэродинамические качества прямого крыла и крыла обратной стреловидности уменьшились К = 2,76 и К = 1,48 довольно резко, а вот аэродинамическое качество стреловидного крыла изменилось незначительно К =2,25.

Анализируя результаты полученные для стреловидного крыла мы заметили, что с увеличением скорости воздушного потока лобовое сопротивление крыла увеличивается довольно медленно сохраняя при этом коэффициент подъемной силы почти неизменным.

В данной работе мы с вами изучали зависимость подъемной силы крыла только от его формы в плане. В реальном полете подъёмная сила крыла зависит и от его площади, профиля, а также от угла атаки, скорости и плотности потока и от целого ряда других факторов.

Чтобы эксперимент был чистым надо придерживаться следующих условий

  • поток воздуха удерживали постоянным;
  • ось крыла и ось аэродинамической трубы совпадали.
  • расстояние от конца трубы до места крепления крыла всегда было одинаковым;
  • П.С. Кудрявцев. И.Я. Конфедератов. История физики и техники. Учебное пособие для студентов педагогических институтов. Государственное учебно - педагогическое издательство Министерства просвещения РСФСР. Москва 1960 г.
  • Физика. Я познаю мир. Детская энциклопедия. Москва. АСТ. 2000 г.
  • В.Б. Байдаков, А.С. Клумов. Аэродинамика и динамика полета летательных аппаратов. Москва. «Машиностроение»,1979г.
  • Большая советская энциклопедия. 13. Издание третье. Москва.« Советская энциклопедия» ,1978 г.

Рассмотрим теперь обтекание потоком воздуха крыла самолета. Опыт показывает, что, когда крыло помещено в поток воздуха, вблизи острой задней кромки крыла возникают вихри, вращающиеся в случае, изображенном на рис. 345, против часовой стрелки. Вихри эти растут, отрываются от крыла и уносятся потоком. Остальная масса воздуха вблизи крыла получает при этом противоположное вращение (по часовой стрелке), образуя циркуляцию около крыла (рис. 346). Накладываясь на общий поток, циркуляция обусловливает распределение линий тока, изображенное на рис. 347.

Рис. 345. У острого края профиля крыла образуется вихрь

Рис. 346. При образовании вихря возникает циркуляция воздуха вокруг крыла

Рис. 347. Вихрь унесен потоком, а линии тока плавно обтекают профиль; они сгущены над крылом и разрежены под крылом

Мы получили для профиля крыла такую же картину обтекания, как и для вращающегося цилиндра. И здесь на общий поток воздуха наложено вращение вокруг крыла - циркуляция. Только, в отличие от вращающегося цилиндра, здесь циркуляция возникает не в результате вращения тела, а благодаря возникновению вихрей вблизи острого края крыла. Циркуляция ускоряет движение воздуха над крылом и замедляет его под крылом. Вследствие этого над крылом давление понижается, а под крылом повышается. Равнодействующая всех сил, действующих со стороны потока на крыло (включая силы трения), направлена вверх и немного отклонена назад (рис. 341). Ее составляющая, перпендикулярная к потоку, представляет собой подъемную силу а составляющая в направлении потока - силу лобового сопротивления . Чем больше скорость набегающего потока, тем больше и подъемная сила и сила лобового сопротивления. Эти силы зависят, кроме того, и от формы профиля крыла, и от угла, под которым поток набегает на крыло (угол атаки), а также от плотности набегающего потока: чем больше плотность, тем больше и эти силы. Профиль крыла выбирают так, чтобы оно давало возможно большую подъемную силу при возможно меньшем лобовом сопротивлении. Теория возникновения подъемной силы крыла при обтекании потоком воздуха была дана основоположником теории авиации, основателем русской школы аэро - и гидродинамики Николаем Егоровичем Жуковским (1847-1921).

Теперь мы можем объяснить, как летает самолет. Воздушный винт самолета, вращаемый двигателем, или реакция струи реактивного двигателя, сообщает самолету такую скорость, что подъемная сила крыла достигает веса самолета и даже превосходит его. Тогда самолет взлетает. При равномерном прямолинейном полете сумма всех сил, действующих на самолет, равна нулю, как и должно быть согласно первому закону Ньютона. На рис. 348 изображены силы, действующие на самолет при горизонтальном полете с постоянной скоростью. Сила тяги двигателя равна по модулю и противоположна по направлению силе лобового сопротивления воздуха для всего самолета, а сила тяжести равна по модулю и противоположна по направлению подъемной силе .

Рис. 348. Силы, действующие на самолет при горизонтальном равномерном полете

Самолеты, рассчитанные на полет с различной скоростью, имеют различные размеры крыльев. Медленно летящие транспортные самолеты должны иметь большую площадь крыльев, так как при малой скорости подъемная сила, приходящаяся на единицу площади крыла, невелика. Скоростные же самолеты получают достаточную подъемную силу и от крыльев малой площади. Так как подъемная сила крыла уменьшается при уменьшении плотности воздуха, то для полета на большой высоте самолет должен двигаться с большей скоростью, чем вблизи земли.

Подъемная сила возникает и в том случае, когда крыло движется в воде. Это дает возможность строить суда, движущиеся на подводных крыльях. Корпус таких судов во время движения выходит из воды (рис. 349). Это уменьшает сопротивление воды движению судна и позволяет достичь большой скорости хода. Так как плотность воды во много раз больше, чем плотность воздуха, то можно получить достаточную подъемную силу подводного крыла при сравнительно малой его площади и умеренной скорости.

Рис. 349. Судно на подводных крыльях

Назначение самолетного винта - это придание самолету большой скорости, при которой крыло создает подъемную силу, уравновешивающую вес самолета. С этой целью винт самолета укрепляют на горизонтальной оси. Существует тип летательных аппаратов тяжелее воздуха, для которого крылья не нужны. Это - вертолеты (рис. 350).

Рис. 350. Схема вертолета

В вертолетах ось воздушного винта расположена вертикально и винт создает тягу, направленную вверх, которая и уравновешивает вес вертолета, заменяя подъемную силу крыла. Винт вертолета создает вертикальную тягу независимо от того, движется вертолет или нет. Поэтому при работе воздушных винтов вертолет может неподвижно висеть в воздухе или подниматься по вертикали. Для горизонтального перемещения вертолета необходимо создать тягу, направленную горизонтально. Для этого не нужно устанавливать специальный винт с горизонтальной осью, а достаточно только несколько изменить наклон лопастей вертикального винта, что выполняется при помощи специального механизма во втулке винта.

Возраст: 14 лет

Место учебы: МБОУ ЛАП №135

Город, регион: Самара, 63

Руководитель: Самсонова Наталья Юрьевна, учитель физики

Историко-исследовательская работа «Бумажный самолетик - детская забава и научные исследования"

Вступление____________________________________________________ 2

Цели и задачи _________________________________________________________3-4

Основная часть ________________________________________________________5-12

Подъёмная сила крыла самолёта_____________________________________________5-8

История развития самолётов ________________________________________________9-10

Факторы, влияющие на подъёмную силу крыла самолёта________________________10

Факторы, влияющие на дальность полёта______________________________________10

Факторы, влияющие на время полёта_________________________________________10

Наблюдения и опыты_______________________________________________________10-12

Методика_________________________________________________________________12

Заключение _____________________________________________________________13

Список литературы_______________________________________________ 14

Введение

Люди давно мечтали летать. Сделать бы крылья, как у птиц, у насекомых, у летучих мышей. Сколько всякой живности носится в воздухе, а человек не может!

Смелые изобретатели пытались делать крылья для людей. Но взлететь на таких крыльях никому не удавалось. У человека не хватало силы, чтобы поднять себя в воздух. В лучшем случае изобретателям удавалось благополучно опуститься на землю, спланировав на своих крыльях с горы или высокой башни. Для этого сила не требовалась.

Каждый раз, когда я вижу самолет - взмывающую в небо серебряную птицу, --- я восхищаюсь мощью, с которой он легко преодолевает земное притяжение и бороздит небесный океан и задаю себе вопросы:

  • Как должно быть устроено крыло самолета, чтобы выдержать большой груз?
  • Какой должна быть оптимальная форма крыла, рассекающего воздух?
  • Какие характеристики ветра помогают самолету в его полете?
  • Какую скорость может развивать самолет?

Человек всегда мечтал подняться в небо «как птица» и издревле пытался воплотить свою мечту. В 20 веке авиация начала так быстро развиваться, что человечество не смогло сохранить многие подлинники этой сложной техники. Но многие образцы сохранились в музеях в виде уменьшенных макетов, дающих почти полное представление о реальных машинах.

Я выбрал эту тему, потому, что она помогает в жизни не только развить логическое техническое мышление, но и приобщиться к практическим навыкам работы с бумагой, материаловедением, технологией проектирования и конструирования летательных аппаратов. А самое главное - это создание своего самолёта.

Мы выдвинули гипотезу - можно предположить, что летные характеристики самолета зависят от его формы.

Мы использовали следующие методы исследования:

  • Изучение научной литературы;
  • Получение информации в сети Интернет;
  • Непосредственное наблюдение, экспериментирование;
  • Создание экспериментальных пилотных моделей самолетов;

Цель и задачи

Цель работы: Сконструировать самолеты, обладающие следующими характеристиками: максимальной дальностью и длительностью полета.

Задачи:

Проанализировать информацию, полученную из первоисточников;

Изучить элементы древнего восточного искусства аэрогами;

Познакомиться с основами аэродинамики, технологии конструирования летательных аппаратов из бумаги;

Провести испытания сконструированных моделей;

Выработать навыки правильного, результативного запуска моделей;

В основу моего исследования я взял одно из направлений японского искусства оригами - аэрогами (от яп. «гами» - бумага и лат. «аэро» - воздух).

Аэродинамика (от греческих слов aer - воздух и dinamis - сила) - это наука о силах, возникающих при движении тел в воздухе. Воздух, благодаря своим физическим свойствам, сопротивляется продвижению в нем твердых тел. При этом, между телами и воздухом возникают силы взаимодействия, которые и изучаются аэродинамикой.

Аэродинамика является теоретической основой современной авиации. Любой летательный аппарат, летит, подчиняясь законам аэродинамики. Поэтому для конструктора самолёта, знание основных законов аэродинамики, не только полезно, но и просто необходимо. Изучая законы аэродинамики, я провёл серию наблюдений и опытов: «Выбор формы летательного аппарата», «Принципы создания крыла», «Дуновение» и т. д.

Конструирование.

Сложить бумажный самолетик не так просто, как кажется. Действия должны быть уверенными и точными, сгибы - идеально прямыми и в нужных местах. Простые конструкции прощают ошибки, в сложной же пара неидеальных углов может завести процесс сборки в тупик. Кроме того, есть случаи, когда сгиб необходимо намеренно выполнить не очень точно.

Например, если на одном из последних шагов требуется сложить толстую многослойную конструкцию пополам, сгиб не получится, если не сделать поправку на толщину в самом начале складывания. Такие вещи не описываются в схемах, они приходят с опытом. А от симметрии и точной развесовки модели зависит, насколько хорошо она полетит.

Ключевой момент в «бумажной авиации» - расположение центра тяжести. Создавая различные конструкции, я предлагаю утяжелить нос самолета, разместив в нем больше бумаги, сформировать полноценные крылья, стабилизаторы, киль. Тогда бумажным самолетиком можно управлять, как настоящим.

Например, экспериментальным путём я выяснил, что скорость и траекторию полета можно корректировать, сгибая заднюю часть крыльев подобно настоящим закрылкам, слегка поворачивая бумажный киль. Такое управление лежит в основе «бумажной аэробатики».

Конструкции самолетов существенно различаются в зависимости от цели их постройки. К примеру, самолеты для полетов на большие дистанции по форме напоминают дротик - они такие же узкие, длинные, жесткие, с ярко выраженным смещением центра тяжести к носу. Самолеты для максимально длительных полетов не отличаются жесткостью, зато имеют большой размах крыльев, хорошо сбалансированы. Балансировка крайне важна для самолетов, запускаемых на улице. Они должны сохранять правильное положение, несмотря на дестабилизирующие колебания воздуха. Самолетам, запускаемым в помещении, полезно смещение центра тяжести к носу. Такие модели летают быстрее и стабильнее, их проще запускать.

Испытания

Для того чтобы достичь высоких результатов при запуске, необходимо овладеть правильной техникой броска.

  • Чтобы отправить самолет на максимальную дистанцию, нужно как можно сильнее бросить его вперед и вверх под углом 45 градусов.
  • В состязаниях на время полета следует забросить самолет на максимальную высоту, чтобы он дольше планировал вниз.

Запуск на открытом воздухе помимо дополнительных проблем (ветер) создает и дополнительные преимущества. Используя восходящие потоки воздуха, можно заставить самолет лететь невероятно далеко и долго. Сильный восходящий поток можно найти, к примеру, около большого многоэтажного дома: ударяясь о стену, ветер меняет направление на вертикальное. Более дружелюбную воздушную подушку можно отыскать в солнечный день на автомобильной парковке. Темный асфальт сильно нагревается, и горячий воздух над ним плавно поднимается вверх.

Основная часть.

1.1 Подъёмная сила крыла самолёта.

Чего только не вытворяют движущиеся потоки - даже сталкивают корабли. А нельзя ли использовать их силу для подъема тел вверх? Автомобилисты знают, что на большой скорости передок автомобиля может оторваться от дороги, как бы взлететь. Даже ставят антикрылья, чтобы этого не происходило. Откуда же появляется подъемная сила?

Здесь нам не обойтись без такого понятия, как крыло. Самое простое крыло - это, пожалуй, воздушный змей (рис. 216). Как же он летает? Вспомним, что мы тянем змея за веревку, создавая набегающий на его плоскость, или крыло, ветер. Обозначим плоскость крыла АВ,натяжение веревки Q,собственный вес змея Р,результирующую этих сил R, 1

Набегающий на плоскость змея АВветер, отражаясь от нее, создает подъемную силу R,которая, чтобы змей не упал, должна быть равной R,а лучше больше, чтобы змей поднимался наверх. Вы чувствуете, что не так все просто, если речь идет о полете? Еще сложнее, чем со змеем, обстоит дело с подъемной силой крыла самолета.

Сечение крыла самолета представлено на рис. 217 а.Практика показала, что для осуществления подъема крыло самолета должно быть расположено так, чтобы имелся некоторый угол а - угол атаки, между его нижней линией и направлением полета. Этот угол изменяется действием руля высоты.

При горизонтальном полете угол а не превышает 1-1,5°, при посадке - около 15°. Оказывается, что при наличии такого угла атаки, скорость потока воздуха, обтекающего крыло сверху, будет больше, чем скорость ^/^потока, обтекающего нижнюю поверхность крыла. На рис. 217 а эта разность скоростей отмечена разной густотой линии тока.

Рис. 217. Как возникают подъемная сила крыла (а) и силы, действующие на самолет (б)

Но, как мы уже знаем, в том месте потока, где скорость больше, давление меньше, и наоборот. Поэтому при движении самолета в воздухе над верхней поверхностью крыла будет пониженное давление, а над нижней - повышенное. Эта разность давлений обуславливает действие на крыло силы R,направленной вверх.

Вертикальная составляющая этой силы - сила Fпредставляет собой подъемную силу, направленную против веса тела Р.Если эта сила больше веса самолета, последний будет подниматься вверх. Вторая составляющая Qпредставляет собой лобовое сопротивление, оно преодолевается тягой винта.

На рис. 217, б показаны силы, действующие на самолет при горизонтальном равномерном полете: F, -подъемная сила, Р -вес самолета, F., -лобовое сопротивление и F -сила тяги винта.

Большой вклад в разработку теории крыла, да и вообще аэродинамической теории, внес русский ученый, профессор Н. Е. Жуковский (1847—1921). Еще до полетов человека Жуковский сказал интересные слова: «Человек не имеет крыльев, и по отношению веса своего тела к весу мускулов в 72 раза (!) слабее птицы. Но я думаю, что он полетит, опираясь не на силу своих мускулов, а на силу своего разума».

Рис. 218. Форма крыльев в плане при М < 1 и М > 1

Авиация давно перешагнула звуковой барьер, который измеряется так называемым числом Маха - М. При дозвуковой скорости М < 1, при звуковой М = 1, при сверхзвуковой М > 1. И форма крыла при этом изменилась - оно стало тоньше и острее. Форма крыльев в плане тоже изменилась. Дозвуковые крылья имеют прямоугольную, трапециевидную или эллиптическую форму. Околозвуковые и сверхзвуковые крылья делаются стреловидными, дельтовидными (как греческая буква «дельта») или треугольными (рис. 218). Дело в том, что при движении самолета с около- и сверхзвуковой скоростью возникают так называемые ударные волны, связанные с упругостью воздуха и скоростью распространения в нем звука. Чтобы уменьшить это вредное явление и применяются крылья более острой формы. Картина обтекания воздухом дозвукового и сверхзвукового крыльев представляет на рис. 219, где видна разница в их взаимодействии с воздухом.

А сверхзвуковые самолеты, снабженные такими крыльями, показаны на рис. 220.

Рис. 219. Картина обтекания воздухом дозвукового и сверхзвукового крыльев

Рис. 220. Сверхзвуковые бомбардировщик (а) и истребители (б)

Самолеты со скоростью М > 6 называются гиперзвуковыми. Их крылья строятся так, чтобы ударные волны от обтекания фюзеляжа и крыла как бы гасили друг друга. Оттого и форма крыльев у таких самолетов замысловатая, так называемая W-образная, или М-образная (рис. 221).

Рис. 221. Гиперзвуковой самолет

Рис. 222. Эволюция самолетов

История развития самолётов

Кратко об истории полетов человека и эволюции самолетов (рис. 222).

В 1882 г. русский офицер А. Ф. Можайский построил самолет с паровым двигателем, который из-за большой тяжести взлететь так и не смог. Несколькими годами позже немецкий инженер Лилиенталь проделал ряд скользящих полетов на построенном им балансирном планере, который управлялся перемещением центра тяжести тела пилота. Во время одного из таких полетов планер потерял устойчивость, и Лилиенталь погиб. В 1901 г. американские механики братья Райт построили планер из бамбука и полотна и проделали на нем несколько удачных полетов. Планер запускался с пологого склона холма при помощи примитивной катапульты, состоящей из небольшой бревенчатой вышки и веревки с грузом. Летом братья учились летать, а остальное время работали в своей велосипедной мастерской, копя деньги для продолжения опытов. Зимой 1902—1903 г. они изготовили бензиновый двигатель внутреннего сгорания, установили его на своем планере и 17 декабря 1903 г. совершили первые полеты, самый долгий из которых хотя и продолжался только 59 секунд, все же показал, что самолет способен взлетать и держаться в воздухе.

Усовершенствовав самолет и достигнув некоторого летного мастерства, братья Райт в 1906 г. обнародовали свое изобретение. С этого момента началось бурное развитие авиации во многих странах мира. Через 3 года французский инженер Блерио перелетел на самолете своей конструкции через Ла-Манш, доказав способность этой машины летать над морем. Менее чем через 20 лет на одноместном самолете был совершен перелет из Америки в Европу через Атлантический океан, а еще через 10 лет, летом 1937 г., трое советских летчиков - В. П. Чкалов, Г. Ф. Байдуков и А. В. Беляков - на самолете А. Н. Туполева АНТ-25 перелетели из Москвы в Америку через Северный полюс. Через несколько дней М. М. Громов, А. Б. Юмашев и С. А. Данилин, пролетев тем же маршрутом, установили мировой рекорд дальности полета по прямой, покрыв без посадки 10 300 км.

Наряду с дальностью росли грузоподъемность, высотность и скорость самолетов. Первый сверхтяжелый самолет «Илья Муромец» был построен в России. Этот четырехмоторный гигант настолько превосходил все тогдашние машины, что за рубежом долго не могли поверить в существование такого самолета. В 1913 г. «Илья Муромец» побил мировые рекорды дальности, высотности и грузоподъемности.

Если скорость самолета братьев Райт была около 50 км/ч, то современные самолеты летают в несколько раз быстрее звука. А еще быстрее летают ракеты. Например, ракета-носитель, которая вывела на орбиту первый искусственный спутник Земли, имела М>28.

1.2Факторы, влияющие на подъёмную силу крыла самолёта.

1)скорость воздуха

2)форма крыла

3)плотность среды

1.3 Факторы, влияющие на дальность полёта.

1)вес самолёта

2)форма крыла

1.4 Факторы, влияющие на время полёта.

1)высотное струйное течение;

2)попутный ветер, встречный ветер, боковой ветер;

3)форма крыла

1.5 Наблюдения и опыты.

Наблюдения

Выбор формы летательного аппарата.

Опыт № 1

Вывод:

Обтекаемая форма способствует удержанию самолета в воздухе. При скольжении вперед она создает подъемную силу. Самолет будет подниматься, пока не иссякнет сила, с которой я запустил его воздух. А простой лист бумаги имеет слишком большую опорную поверхность, что не способствует правильному полету.

Принципы создания крыла.

Оборудование:

  • Лист бумаги;
  • Две книги.

Опыт № 2

Внезапный порыв ветра:

Опыт № 3

Оборудование:

  • Лист бумаги;
  • Две книги.

Опыт № 4

Дуновение.

Оборудование:

  • Две полоски бумаги

Вывод:

Воздух быстрее скользит по верхней, выгнутой части крыла, у которого передний край выше заднего (это помогает воздуху соскальзывать с крыла). Следовательно, давление воздуха под крылом выше, поэтому оно толкает крыло вверх. Сила, поддерживающая крыло вызвана разностью давлений. Она называется подъемной силой. Воздушный поток на крыле может отводиться вниз с помощью закрылков или элеронов. Они позволяют самолету взлетать, делать виражи и летать на малой высоте даже при небольшой скорости.

1.6 Методика

Я решил провести эксперимент доказывающий зависимость времени и дальности полёта от формы крыла. Я сделал 5 моделей бумажных самолётов. Я запускал самолёты одной массы с одинаковой силой несколько раз. После запуска всех моделей я записал в таблицу результаты запусков и средний арифметический результат. По среднему арифметическому я нашёл победителей по дальности и времени полёта (модель №2 и модель №5) .Время и дальность полёта у всех моделей разная => от формы крыла зависит дальность и время полёта.

Заключение

Анализ результатов испытаний:

Для оценки моделей я решил использовать 5

Бальную систему:

Исходя из таблицы, я нашёл самый оптимальный вариант бумажных самолётов: модель №4. Модель №2 хороша для соревнований на дальность, а модель №3 обладает повышенной длительностью полёта.

Во время экспериментов у меня не получилось точно измерить дальность и время полёта каждого самолёта, запускать самолёты с одной силой, получились примерно измерить время и дальность полёта каждого самолёта.

Благодаря этим опытам и информации из сети Интернет я смог составить таблицу форм поперечного сечения крыльев самолётов и их назначение:

Список использованной литературы

1)Антонов О.К., Патон Б.И. Планеры, самолеты. Наук. Думка, 1990. - 503 с.

2)Большая книга экспериментов для школьников/ под ред. Антонеллы Мейяни. - М.: ЗАО «РОСМЭН-ПРЕСС», 2007. - 260 с. http://www.ozon.ru/context/detail/id/121580 /

3)Микортумов Е.Б., Лебединский М.С. Авиамоделизм; Сборник статей. Пособие для руководителей авиамодельных кружков. - М. Учпедгиз, 1960. - 144 с.

4)Никулин А. П. Сборник лучших моделей из бумаги (оригами). Искусство складывания из бумаги. - М.: Терра - Книжный клуб, 2005, 68 с.

5)Свищев Г.П.. Белов А.Ф. Авиация: энциклопедия. - М.: «Большая российская энциклопедия», 194. - 756 с. Сухаревская О.Н. Оригами для самых маленьких. - М.: Айрис Пресс, 2008. - 140 с.

6)Удивительная физика - О чем умолчали учебники Н.В.Гулиа


Вопросы для повторения: Какие опыты поставили, чтобы показать роль сил поверхностного натяжения в дыхании? Почему постоянный синтез сурфоктантов помогает нам дышать, и что происходит, когда он прекращается? Почему аквалангисты должны дышать под водой сжатым воздухом? Почему при спуске на большие глубины водолазы не могут использовать сжатый воздух, а должны приготовлять специальные дыхательные смеси? Что такое кессонная болезнь и как её избежать?










Сила сопротивления воздушному потоку Сила сопротивления пропорциональна числу молекул воздуха, которых останавливает крыло, их массе и скорости F сопр поперечное (лобовое) сечение крыла в направлении движения где - плотность воздуха, V - скорость самолёта, а S - площадь его крыла угол атаки


Сила сопротивления изменение импульса воздуха Подъёмная сила воздушного потока mV0mV0 mV1mV1 Подъёмная сила пропорциональна числу молекул воздуха, которых поворачивает крыло, их массе и скорости где - плотность воздуха, V - скорость самолёта, а S - площадь его крыла


















Зависимость скорости самолёта от его массы При неизменной мощности двигателя, чем больше масса самолёта, тем медленнее он летит При неизменной скорости и аэродинамических качествах, т.е. С под /С сопр = const, грузоподъёмность пропорциональна площади крыльев


Есть ли связь между посещаемостью и успеваемостью? посещаемость, % результаты зачёта Как количественно определить, тесно ли связано изменение двух величин?


Посещаемость, % результаты зачёта Как количественно определить, тесно ли связано изменение двух величин? Есть ли связь между посещаемостью и успеваемостью?


Вычисляем коэффициент корреляции (связи), CORR, между успеваемостью и посещаемостью посещаемость, % результаты зачёта средняя посещаемость АБ ВГ средняя успеваемость CORR(10 «Б») = 0

Современный самолет – это сложнейшее сооружение, состоящее из сотен тысяч деталей, электронно-вычислительных устройств. Полетная масса самолетов достигает нескольких сотен тонн. Как же возникает подъемная сила, удерживающая самолет в воздухе?

Со стороны атмосферы на крылья и корпус самолета действуют огромные силы давления. К примеру, площадь нижней поверхности крыла современного пассажирского самолета Ил-62 равна 240 м 2 , а вместе с поверхностью стабилизаторов достигает 280 м 2 . Атмосферное давление равно 10 5 Па, поэтому на крылья воздух действует с силой 2,8×10 7 Н. Эта сила в 18 раз превышает вес самолета с пассажирами (полетный вес самолета Ил-62 равен 1,54×10 6 Н).

Для возникновения подъемной силы давление воздуха на нижнюю поверхность крыла должно быть больше, чем на верхнюю.

Такое перераспределение давления обычно происходит при обтекании крыла воздушным потоком. Рассчитаем избыточное давление, необходимое для того, чтобы возникла подъемная сила, равная силе тяжести, действующей на самолет Ил-62:

Это избыточное давление составляет примерно 0,05 от нормального атмосферного давления. Пример показывает, что для взлета самолета достаточно создать небольшое избыточное давление. Как же оно возникает?

Когда воздушный поток начинает обтекать крыло, то из-за действия сил трения у задней кромки крыла образуется вихрь, в котором воздух вращается против часовой стрелки, если крыло движется влево (рис. 2.3.). Но по законам механики при возникновении вращения против часовой стенки должно возникнуть вращение по часовой стрелке (это следует из закона сохранения момента импульса, который гласит, что в замкнутой системе тел полный (суммарный) импульс остается постоянным). Такое вращение воздуха и возникает вокруг крыла. На обтекающий крыло поток накладывается циркуляция воздуха вокруг крыла. В результате скорость воздушного потока над крылом оказывается больше, чем под крылом, так как над крылом скорость циркуляции имеет такое же направление, как и скорость набегающего на крыло потока, а под крылом эти скорости противоположны по направлению. Но согласно закону Бернулли давление должно быть больше там, где скорость меньше. Следовательно, под крылом давление больше, чем над ним. Из-за этого и возникает подъемная сила.

Можно приближенно оценить, от чего зависит перепад давлений вокруг крыла. Если самолет движется со скоростью относительно воздуха, то в системе координат, связанной с самолетом, крыло неподвижно, а на него набегает воздушный поток с такой же по модулю скоростью. Обозначим модуль скорости циркулирующего воздуха через u . Тогда модуль скорости воздуха над крылом будет равен v 1 = v + u , а под крылом v 2 = v u . Запишем закон Бернулли:



p 1 + = p 2 + .

Dp = p 2 – p 1 = r( - ) = 2 rvu.

В нижних слоях атмосферы, где плотность воздуха больше, достаточная подъемная сила может возникнуть и при малых скоростях движения самолета . На больших высотах плотность воздуха уменьшается, но там могут быть развиты значительные скорости, и за счет этого будет возникать необходимая подъемная сила.

Скорость самолета Ил–62 равна 900 км/ч, а на тех высотах, где он летает, плотность воздуха порядка 1кг/м 3 . Поэтому при скорости циркуляции порядка 10 м/с возникает необходимый для полета перепад давлений:

Dp= Па = 5×10 3 Па.

Закон Бернулли дает возможность понять, почему возникает подъемная сила у крыла самолета. Скорость обтекания воздухом верхней кромки крыла больше, чем нижней. Поэтому давление воздуха на нижнюю кромку крыла больше, чем на верхнюю.